找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Algebras and Applications; The Abel Symposium 2 Toke M. Carlsen,Nadia S. Larsen,Christian Skau Conference proceedings 2016 Springe

[復(fù)制鏈接]
樓主: Lipase
11#
發(fā)表于 2025-3-23 10:51:53 | 只看該作者
,C?-Tensor Categories and Subfactors for Totally Disconnected Groups,has the Haagerup property or property?(T), and when . is weakly amenable. When . is compactly generated, we prove that . is essentially equivalent to the planar algebra associated by Jones and Burstein to a group acting on a locally finite bipartite graph. We then concretely realize . as the categor
12#
發(fā)表于 2025-3-23 17:33:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:30 | 只看該作者
14#
發(fā)表于 2025-3-23 22:43:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:40 | 只看該作者
,C?-Algebras Associated with Algebraic Actions,algebraic endomorphisms of a compact abelian group—or, dually, of a discrete abelian group. In our survey we do not try to describe the entire scope of the methods and results obtained in the original papers, but we concentrate on the important thread coming from the action of the multiplicative sem
16#
發(fā)表于 2025-3-24 07:43:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:21:20 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:17 | 只看該作者
,Semigroup C?-Algebras, have been studied for some time, but it was only recently that several new connections and results were discovered, triggered by particularly interesting examples from number theory and group theory. We explain the construction of semigroup C*-algebras, introduce the basic underlying algebraic obje
19#
發(fā)表于 2025-3-24 22:45:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:23:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
法库县| 青河县| 韩城市| 九江市| 开平市| 永城市| 荃湾区| 黄平县| 铜鼓县| 玉门市| 天门市| 凤城市| 张掖市| 藁城市| 友谊县| 门头沟区| 峨边| 郑州市| 通州区| 莒南县| 板桥市| 横峰县| 肃宁县| 定安县| 赤壁市| 阳信县| 通海县| 读书| 老河口市| 深圳市| 临江市| 呼玛县| 遂溪县| 松江区| 衢州市| 凤山县| 乌苏市| 南召县| 正定县| 夹江县| 彭州市|