找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operator Algebras and Applications; The Abel Symposium 2 Toke M. Carlsen,Nadia S. Larsen,Christian Skau Conference proceedings 2016 Springe

[復(fù)制鏈接]
樓主: Lipase
11#
發(fā)表于 2025-3-23 10:51:53 | 只看該作者
,C?-Tensor Categories and Subfactors for Totally Disconnected Groups,has the Haagerup property or property?(T), and when . is weakly amenable. When . is compactly generated, we prove that . is essentially equivalent to the planar algebra associated by Jones and Burstein to a group acting on a locally finite bipartite graph. We then concretely realize . as the categor
12#
發(fā)表于 2025-3-23 17:33:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:30 | 只看該作者
14#
發(fā)表于 2025-3-23 22:43:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:40 | 只看該作者
,C?-Algebras Associated with Algebraic Actions,algebraic endomorphisms of a compact abelian group—or, dually, of a discrete abelian group. In our survey we do not try to describe the entire scope of the methods and results obtained in the original papers, but we concentrate on the important thread coming from the action of the multiplicative sem
16#
發(fā)表于 2025-3-24 07:43:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:21:20 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:17 | 只看該作者
,Semigroup C?-Algebras, have been studied for some time, but it was only recently that several new connections and results were discovered, triggered by particularly interesting examples from number theory and group theory. We explain the construction of semigroup C*-algebras, introduce the basic underlying algebraic obje
19#
發(fā)表于 2025-3-24 22:45:26 | 只看該作者
20#
發(fā)表于 2025-3-25 02:23:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岐山县| 盐池县| 保靖县| 海城市| 怀安县| 墨脱县| 萍乡市| 江孜县| 长葛市| 佛教| 大埔区| 汝城县| 兰坪| 许昌市| 丘北县| 黔东| 古蔺县| 德州市| 丰原市| 黄石市| 宣威市| 宣武区| 乌拉特后旗| 马关县| 吴堡县| 门源| 交城县| 金门县| 无为县| 潜江市| 南川市| 泸水县| 孟连| 屯昌县| 册亨县| 苍溪县| 罗城| 伊宁市| 新竹市| 霍林郭勒市| 遂昌县|