找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operationalizing Multi-Cloud Environments; Technologies, Tools Rajganesh Nagarajan,Pethuru Raj,Ramkumar Thirunavu Book 2022 The Editor(s)

[復(fù)制鏈接]
樓主: supplementary
11#
發(fā)表于 2025-3-23 12:39:17 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:30 | 只看該作者
Hybrid Machine Learning Models for Distributed Biological Data in Multi-Cloud Environmentof independent components. To access the data by distributed way, that is, processing the data based on feature selection in data source and getting the data representative based on this, the informative data will be collected into single site. The hybrid machine learning and deep learning models ar
13#
發(fā)表于 2025-3-23 18:24:57 | 只看該作者
14#
發(fā)表于 2025-3-24 00:31:22 | 只看該作者
15#
發(fā)表于 2025-3-24 03:52:36 | 只看該作者
SLA-Based Group Tasks Max-Min (GTMax-Min) Algorithm for Task Scheduling in Multi-Cloud Environmentsn time and cost (without violating SLA). The proposed algorithm SLA-GTMax-Min schedules the tasks efficiently to the heterogeneous multi-cloud environment satisfying SLA and balances makespan, gain, and penalty/violation cost. Proposed SLA-GTMax-Min represents three levels of SLA provided with three
16#
發(fā)表于 2025-3-24 09:29:21 | 只看該作者
Workload Balancing in a Multi-Cloud Environment: Challenges and Research Directions at each cloud. In the first part of this book chapter, multi-cloud architecture, working functionality of multi-cloud, managing multi-cloud environment such as balanced distribution of load among multiple clouds, power management in an optimized way at each cloud, monitoring of service level agreem
17#
發(fā)表于 2025-3-24 12:23:43 | 只看該作者
18#
發(fā)表于 2025-3-24 16:28:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:31:47 | 只看該作者
An Intense Study on Intelligent Service Provisioning for Multi-Cloud Based on Machine Learning Technugh ISP. Intelligent Cloud Broker (ICB) is often used for simplifying the services selection task. ICB acts as an efficient mediator between cloud service provider (CSP) and cloud user. It acts as a tool for provisioning of services. ISP is made possible through the incorporation of machine learning
20#
發(fā)表于 2025-3-25 03:01:08 | 只看該作者
Fuzzy-Based Workflow Scheduling in Multi-Cloud Environmentction algorithm, which can be used for WFS. The objectives considered in this work are time, cost, and trust. We device a fuzzy logic-based decision for solving the multi-objective problem. The proposed fuzzy logic-based workflow scheduling (FLWS) provides an optimal schedule for the given workflow,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封县| 乌兰察布市| 凤山县| 苗栗县| 大荔县| 阳高县| 繁峙县| 普陀区| 乐昌市| 金湖县| 延庆县| 习水县| 上栗县| 科技| 普陀区| 射洪县| 孝义市| 望谟县| 闵行区| 桃源县| 丁青县| 依安县| 平昌县| 印江| 松阳县| 巴塘县| 威远县| 镇沅| 龙陵县| 板桥市| 南部县| 腾冲县| 六枝特区| 白朗县| 夏河县| 顺昌县| 江门市| 马鞍山市| 仪陇县| 宜君县| 珠海市|