找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On?Stein‘s?Method?for?Infinitely?Divisible?Laws?with?Finite?First?Moment; Benjamin Arras,Christian Houdré Book 2019 The Author(s), under e

[復(fù)制鏈接]
樓主: 自治
11#
發(fā)表于 2025-3-23 10:14:53 | 只看該作者
On?Stein‘s?Method?for?Infinitely?Divisible?Laws?with?Finite?First?Moment978-3-030-15017-4Series ISSN 2365-4333 Series E-ISSN 2365-4341
12#
發(fā)表于 2025-3-23 14:49:13 | 只看該作者
Preliminaries,Nowadays, Stein’s method is a powerful tool to quantify limit theorems appearing in probability theory and, since its introduction in a Gaussian setting, it has been extended to many probability distributions beginning with the Poisson one.
13#
發(fā)表于 2025-3-23 19:18:21 | 只看該作者
14#
發(fā)表于 2025-3-23 22:10:23 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:10 | 只看該作者
SpringerBriefs in Probability and Mathematical Statisticshttp://image.papertrans.cn/o/image/701746.jpg
16#
發(fā)表于 2025-3-24 07:33:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:36:08 | 只看該作者
Introduction,. Starting with Chen’s [30] initial extension to the Poisson case, the method has been developed for various distributions such as compound Poisson, geometric, negative binomial, exponential, or Laplace, to name but a few.
18#
發(fā)表于 2025-3-24 14:54:34 | 只看該作者
Characterization and Coupling,ons and we have to agree on what is meant by “Lipschitz”. Below, the functions we consider need not be defined on the whole of . but just on a subset of . containing ., the range of ., and ., where . is the support of ..
19#
發(fā)表于 2025-3-24 20:48:11 | 只看該作者
Benjamin Arras,Christian Houdréc a ubiquitous memory aid. By changing the quality, respectively the uncertainty of context recognition, the experiments show that human performance in a memory task is increased by explicitly displaying uncertainty information. Finally, we discuss implications of these experiments for today’s conte
20#
發(fā)表于 2025-3-25 02:51:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
应城市| 库尔勒市| 孟连| 阿图什市| 泰顺县| 仙游县| 永靖县| 新竹市| 四平市| 波密县| 金塔县| 铅山县| 尉氏县| 娄底市| 濮阳市| 广东省| 密云县| 页游| 区。| 延安市| 平江县| 资兴市| 余姚市| 团风县| 宿迁市| 民和| 改则县| 茂名市| 保定市| 乌兰县| 泊头市| 疏勒县| 于都县| 阳城县| 靖西县| 桓仁| 内黄县| 赞皇县| 彝良县| 海门市| 和政县|