找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Online Visual Tracking; Huchuan Lu,Dong Wang Book 2019 Springer Nature Singapore Pte Ltd. 2019 Visual Tracking.Correlation Filter.Sparse R

[復(fù)制鏈接]
查看: 21977|回復(fù): 45
樓主
發(fā)表于 2025-3-21 18:45:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Online Visual Tracking
編輯Huchuan Lu,Dong Wang
視頻videohttp://file.papertrans.cn/702/701582/701582.mp4
概述Comprehensively presents the state of the art in online visual tracking.Covers both theory and practice aspects of the topic, addressing seminal research ideas and also approaching the technology from
圖書封面Titlebook: Online Visual Tracking;  Huchuan Lu,Dong Wang Book 2019 Springer Nature Singapore Pte Ltd. 2019 Visual Tracking.Correlation Filter.Sparse R
描述.This book presents the state of the art in online visual tracking, including the motivations, practical algorithms, and experimental evaluations. Visual tracking remains a highly active area of research in Computer Vision and the performance under complex scenarios has substantially improved, driven by the high demand in connection with real-world applications and the recent advances in machine learning. A large variety of new algorithms have been proposed in the literature over the last two decades, with mixed success..Chapters 1 to 6 introduce readers to tracking methods based on online learning algorithms, including sparse representation, dictionary learning, hashing codes, local model, and model fusion. In Chapter 7, visual tracking is formulated as a foreground/background segmentation problem, and tracking methods based on superpixels and end-to-end deep networks are presented. In turn, Chapters 8 and 9 introduce the cutting-edge tracking methods based on correlation filter and deep learning. Chapter 10 summarizes the book and points out potential future research directions for visual tracking.?.The book is self-contained and suited for all researchers, professionals and post
出版日期Book 2019
關(guān)鍵詞Visual Tracking; Correlation Filter; Sparse Representation; Deep Learning; Dictionary Learning; Hashing; M
版次1
doihttps://doi.org/10.1007/978-981-13-0469-9
isbn_ebook978-981-13-0469-9
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Online Visual Tracking影響因子(影響力)




書目名稱Online Visual Tracking影響因子(影響力)學(xué)科排名




書目名稱Online Visual Tracking網(wǎng)絡(luò)公開度




書目名稱Online Visual Tracking網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Online Visual Tracking被引頻次




書目名稱Online Visual Tracking被引頻次學(xué)科排名




書目名稱Online Visual Tracking年度引用




書目名稱Online Visual Tracking年度引用學(xué)科排名




書目名稱Online Visual Tracking讀者反饋




書目名稱Online Visual Tracking讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:07:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:47:29 | 只看該作者
地板
發(fā)表于 2025-3-22 07:08:11 | 只看該作者
5#
發(fā)表于 2025-3-22 09:22:20 | 只看該作者
https://doi.org/10.1007/978-981-13-0469-9Visual Tracking; Correlation Filter; Sparse Representation; Deep Learning; Dictionary Learning; Hashing; M
6#
發(fā)表于 2025-3-22 16:10:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:40:59 | 只看該作者
Visual Tracking Based on Local Model,Many effective and efficient tracking methods cannot deal with partial occlusion and background clutter. To address these issues, several local-based models have been employed for designing robust tracking algorithms.
8#
發(fā)表于 2025-3-22 23:49:23 | 只看該作者
9#
發(fā)表于 2025-3-23 02:53:38 | 只看該作者
10#
發(fā)表于 2025-3-23 07:27:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐都县| 咸宁市| 达尔| 兴文县| 新昌县| 桃园县| 高陵县| 清远市| 焉耆| 军事| 类乌齐县| 巴青县| 南丹县| 西丰县| 广南县| 平湖市| 古浪县| 金山区| 邻水| 高雄市| 克东县| 雷州市| 五家渠市| 定安县| 海淀区| 宜都市| 湘西| 保定市| 海盐县| 黄浦区| 平阳县| 大洼县| 烟台市| 珠海市| 唐山市| 郑州市| 乐陵市| 尉氏县| 交城县| 依兰县| 大港区|