找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Online Machine Learning; A Practical Guide wi Eva Bartz,Thomas Bartz-Beielstein Book 2024 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 50338|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:09:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Online Machine Learning
副標(biāo)題A Practical Guide wi
編輯Eva Bartz,Thomas Bartz-Beielstein
視頻videohttp://file.papertrans.cn/702/701550/701550.mp4
概述Presents systematic comparison of OML and BML in terms of performance, time and memory requirements.Explains how OML can be customized by hyperparameter tuning.Accompanied with continuously-updated co
叢書名稱Machine Learning: Foundations, Methodologies, and Applications
圖書封面Titlebook: Online Machine Learning; A Practical Guide wi Eva Bartz,Thomas Bartz-Beielstein Book 2024 The Editor(s) (if applicable) and The Author(s),
描述. .This book deals with the exciting, seminal topic of Online Machine Learning (OML). The content is divided into three parts: the first part looks in detail at the theoretical foundations of OML, comparing it to Batch Machine Learning (BML) and discussing what criteria should be developed for a meaningful comparison. The second part provides practical considerations, and the third part substantiates them with concrete practical applications...The book is equally suitable as a reference manual for experts dealing with OML, as a textbook for beginners who want to deal with OML, and as a scientific publication for scientists dealing with OML since it reflects the latest state of research. But it can also serve as quasi OML consulting since decision-makers and practitioners can use the explanations to tailor OML to their needs and use it for their application and ask whether the benefits of OML might outweigh the costs...OML will soon become practical; it is worthwhile to get involved with it now. This book already presents some tools that will facilitate the practice of OML in the future. A promising breakthrough is expected because practice shows that due to the large amounts of dat
出版日期Book 2024
關(guān)鍵詞Online Machine Learning; Machine Learning; Artificial Intelligence; Drift Detection; Supervised Learning
版次1
doihttps://doi.org/10.1007/978-981-99-7007-0
isbn_softcover978-981-99-7009-4
isbn_ebook978-981-99-7007-0Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Online Machine Learning影響因子(影響力)




書目名稱Online Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Online Machine Learning網(wǎng)絡(luò)公開度




書目名稱Online Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Online Machine Learning被引頻次




書目名稱Online Machine Learning被引頻次學(xué)科排名




書目名稱Online Machine Learning年度引用




書目名稱Online Machine Learning年度引用學(xué)科排名




書目名稱Online Machine Learning讀者反饋




書目名稱Online Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:49 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:11 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:43 | 只看該作者
Hyperparameter Tuning,(HPT) performed with the Sequential Parameter Optimization Toolbox (SPOT) is also important for the explainability and interpretability of OML procedures and can lead to a more efficient and thus resource-saving algorithm (“Green IT”).
6#
發(fā)表于 2025-3-22 14:10:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:40:30 | 只看該作者
8#
發(fā)表于 2025-3-22 21:27:14 | 只看該作者
,Evaluation and?Performance Measurement,ion?. presents an implementation in Python for selecting training and test data. Section?. describes the calculation of performance. Section?. introduces the generation of benchmark data sets in the field of OML.
9#
發(fā)表于 2025-3-23 02:24:01 | 只看該作者
,Special Requirements for?Online Machine Learning Methods,or an extremely large number of variables (Sect.?.). Section?. describes important aspects such as fairness (Fair Machine Learning (ML)) or interpretability (Interpretable ML) in the context of OML algorithms.
10#
發(fā)表于 2025-3-23 07:29:41 | 只看該作者
,Introduction: From Batch to?Online Machine Learning,. This is especially true for available memory, handling drift in data streams, and processing new, unknown data. Online Machine Learning (OML) is an alternative to BML that overcomes the limitations of BML. In this chapter, the basic terms and concepts of OML are introduced and the differences to B
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高邑县| 儋州市| 古丈县| 白山市| 灵台县| 绩溪县| 安达市| 宾川县| 安多县| 杨浦区| 通渭县| 岳西县| 贵阳市| 阜新| 东至县| 红安县| 布尔津县| 沧源| 池州市| 纳雍县| 察哈| 涟水县| 聊城市| 新兴县| 葵青区| 依安县| 探索| 宁化县| 凤山县| 富阳市| 汝州市| 冷水江市| 武冈市| 修文县| 德令哈市| 青田县| 金乡县| 陕西省| 喀喇| 灵武市| 冀州市|