找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: One-Factorizations; W. D. Wallis Book 1997 Springer Science+Business Media Dordrecht 1997 Matching.graph theory.graphs.mathematics.combina

[復(fù)制鏈接]
樓主: decoction
31#
發(fā)表于 2025-3-27 00:19:53 | 只看該作者
32#
發(fā)表于 2025-3-27 02:00:05 | 只看該作者
Walks, Paths and Cycles,. A . is a walk in which no edge is repeated. A . is a walk in which no vertex is repeated; the . of a path is its number of edges. A walk is . when the first and last vertices, .. and .., are equal. A . of length . is a closed simple walk of length ., . ≥ 3, in which the vertices .., .., ..., x. are all different.
33#
發(fā)表于 2025-3-27 08:29:36 | 只看該作者
34#
發(fā)表于 2025-3-27 11:01:55 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:09 | 只看該作者
36#
發(fā)表于 2025-3-27 21:12:14 | 只看該作者
37#
發(fā)表于 2025-3-28 00:36:57 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:24 | 只看該作者
Graphs,Any reader of this book will have some acquaintance with graph theory. However it seems advisable to have an introductory chapter, not only for completeness, but also because writers in this area differ on fundamental definitions: it is necessary to establish our version of the terminology.
39#
發(fā)表于 2025-3-28 08:44:26 | 只看該作者
One-Factors and One-Factorizations,If . is any graph, then a . or . of . is a subgraph with vertex-set . (.). A . of . is a set of factors of . which are pairwise . no two have a common edge —and whose union is all of ..
40#
發(fā)表于 2025-3-28 12:50:33 | 只看該作者
Orthogonal One-Factorizations,There are a number of applications of one-factorizations in the theory of combinatorial designs. In general this topic is too big to discuss here, but we shall explore a couple of examples. In this chapter we look at the applications concerning Latin squares; one-factorizations and block designs are discussed in Chapter 9.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临潭县| 营山县| 公安县| 乡城县| 女性| 普格县| 得荣县| 东丰县| 望都县| 阿拉善盟| 芮城县| 中宁县| 揭西县| 额尔古纳市| 綦江县| 调兵山市| 佛教| 博客| 麻阳| 绩溪县| 城市| 宣武区| 山阴县| 通海县| 外汇| 潼关县| 乌海市| 铅山县| 剑川县| 喀什市| 进贤县| 安龙县| 平和县| 临漳县| 玉环县| 措勤县| 麻栗坡县| 镶黄旗| 旌德县| 噶尔县| 金川县|