找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: One-Factorizations; W. D. Wallis Book 1997 Springer Science+Business Media Dordrecht 1997 Matching.graph theory.graphs.mathematics.combina

[復(fù)制鏈接]
樓主: decoction
31#
發(fā)表于 2025-3-27 00:19:53 | 只看該作者
32#
發(fā)表于 2025-3-27 02:00:05 | 只看該作者
Walks, Paths and Cycles,. A . is a walk in which no edge is repeated. A . is a walk in which no vertex is repeated; the . of a path is its number of edges. A walk is . when the first and last vertices, .. and .., are equal. A . of length . is a closed simple walk of length ., . ≥ 3, in which the vertices .., .., ..., x. are all different.
33#
發(fā)表于 2025-3-27 08:29:36 | 只看該作者
34#
發(fā)表于 2025-3-27 11:01:55 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:09 | 只看該作者
36#
發(fā)表于 2025-3-27 21:12:14 | 只看該作者
37#
發(fā)表于 2025-3-28 00:36:57 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:24 | 只看該作者
Graphs,Any reader of this book will have some acquaintance with graph theory. However it seems advisable to have an introductory chapter, not only for completeness, but also because writers in this area differ on fundamental definitions: it is necessary to establish our version of the terminology.
39#
發(fā)表于 2025-3-28 08:44:26 | 只看該作者
One-Factors and One-Factorizations,If . is any graph, then a . or . of . is a subgraph with vertex-set . (.). A . of . is a set of factors of . which are pairwise . no two have a common edge —and whose union is all of ..
40#
發(fā)表于 2025-3-28 12:50:33 | 只看該作者
Orthogonal One-Factorizations,There are a number of applications of one-factorizations in the theory of combinatorial designs. In general this topic is too big to discuss here, but we shall explore a couple of examples. In this chapter we look at the applications concerning Latin squares; one-factorizations and block designs are discussed in Chapter 9.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福海县| 辰溪县| 思茅市| 安徽省| 台安县| 固原市| 叶城县| 富顺县| 临汾市| 长宁县| 阿拉善盟| 武威市| 惠来县| 房山区| 西平县| 张家口市| 兴海县| 株洲县| 荃湾区| 常德市| 姚安县| 印江| 绥化市| 鄱阳县| 沙田区| 陆河县| 达拉特旗| 红安县| 洪雅县| 平武县| 洮南市| 祁门县| 百色市| 麻江县| 勐海县| 泽州县| 城固县| 博乐市| 绥德县| 纳雍县| 游戏|