找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On the Higher-Order Sheffer Orthogonal Polynomial Sequences; Daniel J. Galiffa Book 2013 Daniel J. Galiffa 2013 B-Type 1.Mathematica.Ortho

[復(fù)制鏈接]
查看: 23571|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:15:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences
編輯Daniel J. Galiffa
視頻videohttp://file.papertrans.cn/702/701172/701172.mp4
概述Addresses preliminary insights regarding the characterization of Orthogonal Polynomial Sequences.Gives a concise and informative overview of the development of the B- Type 0 Orthogonal Polynomail Sequ
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: On the Higher-Order Sheffer Orthogonal Polynomial Sequences;  Daniel J. Galiffa Book 2013 Daniel J. Galiffa 2013 B-Type 1.Mathematica.Ortho
描述On the Higher-Order Sheffer Orthogonal Polynomial Sequences sheds light on the existence/non-existence of B-Type 1 orthogonal polynomials. This book presents a template for analyzing potential orthogonal polynomial sequences including additional higher-order Sheffer classes. This text not only shows that there are no OPS for thespecial case the B-Type 1 class, but that there are no orthogonal polynomial sequences for the general B-Type 1 class as well. Moreover, it is quite provocative how the seemingly subtle transition from the B-Type 0 class to the B-Type 1 class leads to a drastically more difficult characterization problem. Despite this issue, a procedure is established that yields a definite answer to our current characterization problem, which can also be extended to various other characterization problems as well.Accessible to undergraduate students in the mathematical sciences and related fields, This book functions as an important reference work regarding the Sheffer sequences. The author takes advantage of Mathematica 7 to display unique detailed code and increase the reader‘s understanding of the implementation of Mathematica 7 and facilitate further experimentation. In
出版日期Book 2013
關(guān)鍵詞B-Type 1; Mathematica; Orthogonal Polynomials; Recurrence Relations; Recursion Coefficients; Sheffer Sequ
版次1
doihttps://doi.org/10.1007/978-1-4614-5969-9
isbn_softcover978-1-4614-5968-2
isbn_ebook978-1-4614-5969-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightDaniel J. Galiffa 2013
The information of publication is updating

書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences影響因子(影響力)




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences影響因子(影響力)學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences網(wǎng)絡(luò)公開度




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences被引頻次




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences被引頻次學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences年度引用




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences年度引用學(xué)科排名




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences讀者反饋




書目名稱On the Higher-Order Sheffer Orthogonal Polynomial Sequences讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:02 | 只看該作者
2191-8198 r sequences. The author takes advantage of Mathematica 7 to display unique detailed code and increase the reader‘s understanding of the implementation of Mathematica 7 and facilitate further experimentation. In978-1-4614-5968-2978-1-4614-5969-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
板凳
發(fā)表于 2025-3-22 00:37:19 | 只看該作者
地板
發(fā)表于 2025-3-22 07:48:02 | 只看該作者
5#
發(fā)表于 2025-3-22 12:04:20 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:08 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:53 | 只看該作者
8#
發(fā)表于 2025-3-22 21:49:14 | 只看該作者
9#
發(fā)表于 2025-3-23 02:31:30 | 只看該作者
https://doi.org/10.1007/978-1-4614-5969-9B-Type 1; Mathematica; Orthogonal Polynomials; Recurrence Relations; Recursion Coefficients; Sheffer Sequ
10#
發(fā)表于 2025-3-23 07:40:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英山县| 伊宁市| 澄迈县| 慈利县| 吴旗县| 乃东县| 富顺县| 恩施市| 盐边县| 恭城| 扬州市| 宁国市| 墨竹工卡县| 连云港市| 乐亭县| 色达县| 卓资县| 那坡县| 屯门区| 长宁区| 保靖县| 外汇| 晴隆县| 河间市| 民权县| 荥经县| 广灵县| 百色市| 澄城县| 永康市| 新田县| 南华县| 瓦房店市| 正镶白旗| 仙桃市| 鱼台县| 深水埗区| 和硕县| 凤庆县| 梁山县| 江城|