找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: On Hilbert‘s Sixth Problem; Newton C. A. da Costa,Francisco Antonio Doria Book 2022 Springer Nature Switzerland AG 2022 Physics Formal Phi

[復(fù)制鏈接]
樓主: ACORN
11#
發(fā)表于 2025-3-23 11:10:20 | 只看該作者
ElectromagnetismWe deal now with classical electromagnetic theory. We restrict our attention to the so-called vacuum fields. We start from another sacred spot, . which describe the electromagnetic field.
12#
發(fā)表于 2025-3-23 17:23:32 | 只看該作者
Special RelativityThe basic criterion is: as we suppose that electromagnetic theory is the fundamental theory, we keep that theory as it is, and make the required changes in particle mechanics. “As it is” means: the Lorentz–Poincaré group is the symmetry group of electromagnetism, while the Galilean group is classical mechanics’ symetry group.
13#
發(fā)表于 2025-3-23 21:10:13 | 只看該作者
14#
發(fā)表于 2025-3-23 23:54:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:31 | 只看該作者
Axiomatizations in ZFCThis unification was attained in the domains we just described through a least-effort principle (Hamilton’s Principle) applied to some kind of basic field, a scalar field, namely the Lagrangian or Lagrangian density, from which all known fields should be derived.
16#
發(fā)表于 2025-3-24 07:56:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:57 | 只看該作者
Synthese Libraryhttp://image.papertrans.cn/o/image/701002.jpg
18#
發(fā)表于 2025-3-24 18:39:51 | 只看該作者
https://doi.org/10.1007/978-3-030-83837-9Physics Formal Philosophy; Foundation Physics Philosophy Hilbert; G?del Theorem Philosophy; analytico–c
19#
發(fā)表于 2025-3-24 22:27:43 | 只看該作者
20#
發(fā)表于 2025-3-25 01:49:32 | 只看該作者
0166-6991 inthe axiomatization and examples from the usual theories in physics. For applications, a whole plethora of results from logic that lead to interesting, and sometimes unexpected, consequences..This volume look978-3-030-83839-3978-3-030-83837-9Series ISSN 0166-6991 Series E-ISSN 2542-8292
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿巴嘎旗| 盘锦市| 英山县| 平泉县| 广东省| 东辽县| 新乐市| 仲巴县| 通江县| 五大连池市| 郴州市| 同江市| 治多县| 呈贡县| 永年县| 平湖市| 靖边县| 台南县| 三亚市| 观塘区| 张家港市| 富蕴县| 巴彦淖尔市| 西畴县| 固阳县| 虞城县| 阳山县| 黎平县| 越西县| 永寿县| 北海市| 河源市| 平武县| 仁怀市| 北流市| 即墨市| 仲巴县| 金寨县| 乐平市| 平南县| 多伦县|