找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: On Global Univalence Theorems; T. Parthasarathy Book 1983 Springer-Verlag Berlin Heidelberg 1983 Differenzierbare Abbildung.Finite.Funktio

[復(fù)制鏈接]
樓主: Fruition
41#
發(fā)表于 2025-3-28 17:45:01 | 只看該作者
42#
發(fā)表于 2025-3-28 18:56:53 | 只看該作者
43#
發(fā)表于 2025-3-29 00:19:44 | 只看該作者
44#
發(fā)表于 2025-3-29 06:00:01 | 只看該作者
Fundamental global univalence results of Gale-Nikaido-Inada,o the problem under consideration. One approach places topological assumptions on the map and the other places further conditions on the Jacobian matrices. We will study the former in the next chapter and the latter in the present chapter.
45#
發(fā)表于 2025-3-29 08:43:16 | 只看該作者
Global univalent results in R2 and R3, assumption that the diagonal entries are identically zero will imply that F is one-one in any open convex region in R.-this result supplements the result obtained by Gale and Nikaido. We can weaken our assumptions in rectangular regions in R. using Garcia-Zangwill‘s result given in the previous chapter.
46#
發(fā)表于 2025-3-29 15:10:24 | 只看該作者
47#
發(fā)表于 2025-3-29 18:34:14 | 只看該作者
Assorted applications of univalence mapping results,distribution is infinitely divisible. In this situation weak N-matrices play an important role. There are various other applications (for example to nonlinear net-work theory) but we will not attempt to exhaust all of them for lack of time and space. [We have already seen a nice application of univalent results in stability theory in chapter VII].
48#
發(fā)表于 2025-3-29 22:02:54 | 只看該作者
Global homeomorphisms between finite dimensional spaces,to More and Rheinboldt and this result will then be used to prove Gale-Nikaido‘s theorem under weaker assumptions. In the last section we will prove a result due to McAuley for light open mappings. We will end this chapter with an old conjecture of Whyburn.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柯坪县| 海晏县| 洛隆县| 江北区| 荃湾区| 马龙县| 凌源市| 扶余县| 肃宁县| 黎川县| 安义县| 洛川县| 乌兰察布市| 盐源县| 新干县| 广南县| 邢台市| 兰溪市| 大关县| 宣武区| 会同县| 全椒县| 井研县| 永修县| 崇义县| 和田县| 明星| 九龙县| 巴彦县| 商水县| 乳源| 长兴县| 新泰市| 北京市| 深水埗区| 沧州市| 汾西县| 呼伦贝尔市| 鹿邑县| 商丘市| 石台县|