找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Off-Diagonal Bethe Ansatz for Exactly Solvable Models; Yupeng Wang,Wen-Li Yang,Kangjie Shi Book 2015 Springer-Verlag Berlin Heidelberg 201

[復(fù)制鏈接]
樓主: Orthosis
11#
發(fā)表于 2025-3-23 13:10:42 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:08 | 只看該作者
The Algebraic Bethe Ansatz,The algebraic Bethe Ansatz method for quantum integrable models was proposed by the Leningrad Group [.–.] in the late 1970s, based on YBE. This method was then generalized to open boundary integrable systems by Sklyanin [.] in 1988, through developing an equation accounting for the integrable boundaries.
13#
發(fā)表于 2025-3-23 21:38:02 | 只看該作者
The Periodic Anisotropic Spin-, Chains,Based on the pioneering work of Bethe [.] in which the coordinate Bethe Ansatz method was invented and the exact solution of the spin-. Heisenberg chain model was obtained [.], several authors continued the study of the physical properties of this model.
14#
發(fā)表于 2025-3-24 00:52:12 | 只看該作者
The Spin-, Torus,The spin-. torus model describes the anisotropic spin chain with antiperiodic boundary conditions or a M?bius-like topological boundary condition [.–.].
15#
發(fā)表于 2025-3-24 05:06:33 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:18 | 只看該作者
17#
發(fā)表于 2025-3-24 14:39:04 | 只看該作者
The Nested Off-Diagonal Bethe Ansatz,In Chap.?., we introduced how the nested algebraic Bethe Ansatz method was used in the exact solution of the periodic .-invariant spin chain. This method can also solve the open chain with diagonal boundaries [.–.].
18#
發(fā)表于 2025-3-24 15:26:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:03:48 | 只看該作者
The Izergin-Korepin Model,The integrable models can be classified into several series such as .-, .-, .- and .-types [.–.], associated with different Lie algebras [.].
20#
發(fā)表于 2025-3-25 03:02:33 | 只看該作者
Yupeng Wang,Wen-Li Yang,Kangjie ShiIntroduces basic concepts and newly developed mathematical methods of quantum integrable models.Presents solutions of some famous long-standing problems.Serves as both a reference work for researchers
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余姚市| 深水埗区| 稻城县| 固阳县| 新蔡县| 邯郸市| 桦川县| 黄大仙区| 高邑县| 都安| 莲花县| 屏南县| 邢台市| 龙口市| 贡觉县| 常德市| 马鞍山市| 昔阳县| 楚雄市| 葫芦岛市| 新竹市| 敖汉旗| 淳化县| 灵寿县| 响水县| 治县。| 泾阳县| 靖边县| 浦城县| 双峰县| 崇左市| 花莲县| 晋城| 永州市| 安多县| 上杭县| 庆元县| 肥东县| 运城市| 容城县| 隆化县|