找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Bayesian Inference; Contributions by Jea Jean-Pierre Florens,Michel Mouchart Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 馬用
31#
發(fā)表于 2025-3-26 23:40:10 | 只看該作者
32#
發(fā)表于 2025-3-27 03:04:22 | 只看該作者
Some Useful Properties of the Dirichlet Processess through independence relations between associated .-fields entails a nice description of the posterior distribution of the Dirichlet process at points where there is either no or at least one observation.
33#
發(fā)表于 2025-3-27 05:23:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:11:58 | 只看該作者
Nonparametric Competing Risks Models: Identification and Strong Consistency3)) are used to show the almost sure convergence of simple functionals of the predictable hazard measures and of the distributions of the latent or “fictitious” independent risks. These results entails the almost sure uniform convergence on the real line of the distributions of these independent risks.
35#
發(fā)表于 2025-3-27 17:34:36 | 只看該作者
Duration Model Bayesian Semi-parametric Approachrely random. We give some results on Gamma and Dirichlet distributions laws. In the specific case of Gamma process, we try to give some interpretation of classical results using Bayesian semi-parametric approach. As for the estimation of the nuisance parameter, we simply use an iterative expectation rule and a recurrence approach.
36#
發(fā)表于 2025-3-27 18:34:48 | 只看該作者
37#
發(fā)表于 2025-3-27 22:55:06 | 只看該作者
38#
發(fā)表于 2025-3-28 02:47:53 | 只看該作者
Survival Data with Explanatory Processes: A Full Nonparametric Bayesian Analysister is also obtained. These posterior distributions are computed for Beta processes and Gamma processes in the proportional hazards and multiplicative intensity models. The noninformative case provides a new likelihood for the parameters even in case of ties, contrary to the Cox likelihood.
39#
發(fā)表于 2025-3-28 07:39:41 | 只看該作者
40#
發(fā)表于 2025-3-28 10:49:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静安区| 礼泉县| 滦南县| 苏州市| 平远县| 腾冲县| 揭阳市| 靖远县| 来安县| 玛曲县| 湾仔区| 盈江县| 翁源县| 玛多县| 汝城县| 沂南县| 南京市| 文昌市| 五河县| 镇安县| 清丰县| 巴彦淖尔市| 临洮县| 南木林县| 宁陵县| 灵武市| 博罗县| 河东区| 岳池县| 新巴尔虎左旗| 梧州市| 苏尼特右旗| 吉隆县| 福鼎市| 奇台县| 长丰县| 惠水县| 杭锦旗| 池州市| 威远县| 河北区|