找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[復(fù)制鏈接]
查看: 34562|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:40:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Natural Language Processing and Chinese Computing
副標(biāo)題13th National CCF Co
編輯Derek F. Wong,Zhongyu Wei,Muyun Yang
視頻videohttp://file.papertrans.cn/670/669626/669626.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th
描述.The five-volume set LNCS 15359 - 15363 constitutes the refereed proceedings of the 13th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2024, held in Hangzhou, China, during November 2024..The 161 full papers and 33 evaluation workshop papers included in these proceedings were carefully reviewed and selected from 451 submissions. They deal with the following areas: Fundamentals of NLP; Information Extraction and Knowledge Graph; Information Retrieval, Dialogue Systems, and Question Answering; Large Language Models and Agents; Machine Learning for NLP; Machine Translation and Multilinguality; Multi-modality and Explainability; NLP Applications and Text Mining; Sentiment Analysis, Argumentation Mining, and Social Media; Summarization and Generation..
出版日期Conference proceedings 2025
關(guān)鍵詞Computer Science; Informatics; Conference Proceedings; Research; Applications; Information extraction; Mac
版次1
doihttps://doi.org/10.1007/978-981-97-9440-9
isbn_softcover978-981-97-9439-3
isbn_ebook978-981-97-9440-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Natural Language Processing and Chinese Computing影響因子(影響力)




書目名稱Natural Language Processing and Chinese Computing影響因子(影響力)學(xué)科排名




書目名稱Natural Language Processing and Chinese Computing網(wǎng)絡(luò)公開度




書目名稱Natural Language Processing and Chinese Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Natural Language Processing and Chinese Computing被引頻次




書目名稱Natural Language Processing and Chinese Computing被引頻次學(xué)科排名




書目名稱Natural Language Processing and Chinese Computing年度引用




書目名稱Natural Language Processing and Chinese Computing年度引用學(xué)科排名




書目名稱Natural Language Processing and Chinese Computing讀者反饋




書目名稱Natural Language Processing and Chinese Computing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:34:07 | 只看該作者
Contrastive Learning-Based Sequential Recommendation Modeltems in sequential recommendation. The proposed contrastive learning framework effectively captures intra-sequence item transition patterns and inter-sequence dependencies among items. Empirical evaluations on real-world datasets show that our model significantly outperforms advanced baseline models
地板
發(fā)表于 2025-3-22 06:29:08 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:05 | 只看該作者
Enhancing Complex Causality Extraction via?Improved Subtask Interaction and?Knowledge Fusionween the two ECE subtasks. Besides, we design a knowledge fusion mechanism to fuse knowledge in the two modalities. Furthermore, we employ separate decoders for each subtask to facilitate complex causality extraction. Experiments on three benchmark datasets demonstrate that our method achieves state
6#
發(fā)表于 2025-3-22 13:44:59 | 只看該作者
Mathematical Reasoning via?Multi-step Self Questioning and?Answering for?Small Language Modelslti-step reason in a self questioning and answering way and answer each sub-question in a single step iteratively. Experiments on current mathematical reasoning tasks demonstrate the effectiveness of the proposed approach.
7#
發(fā)表于 2025-3-22 19:08:58 | 只看該作者
High-Quality Distractors Generation for?Human Exam Based on?Reinforcement Learning from?Preference Fment learning, we build and train a reward model to evaluate the quality of individual distractors. Combining the reward model with a diversity evaluation metric, we design an objective function and further train the fine-tuned model using reinforcement learning. Experiments show that the DGRL, afte
8#
發(fā)表于 2025-3-23 01:10:23 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:37 | 只看該作者
MANet: A Multiview Attention Network for?Automatic ICD Codingre integrated to effectively fuse these multiview features, generating more informative and discriminative representations. Extensive experiments conducted on the popular MIMIC-III and MIMIC-IV-ICD9 datasets demonstrate the superiority of our proposed MANet over state-of-the-art methods. On MIMIC-II
10#
發(fā)表于 2025-3-23 07:02:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 18:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南雄市| 时尚| 丰镇市| 左权县| 宜川县| 大同市| 龙里县| 海城市| 西乌珠穆沁旗| 呼和浩特市| 芦山县| 克什克腾旗| 南华县| 邯郸县| 丰都县| 博湖县| 成都市| 阿克陶县| 年辖:市辖区| 宜宾县| 奈曼旗| 中山市| 民乐县| 永和县| 甘洛县| 濮阳县| 新宁县| 武功县| 元江| 贺兰县| 孝义市| 论坛| 玉林市| 双峰县| 忻城县| 漯河市| 许昌县| 诸暨市| 河池市| 定陶县| 东至县|