找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations; Mitsuhiro T. Nakao,Michael Plum,Yoshitaka

[復(fù)制鏈接]
樓主: antibody
31#
發(fā)表于 2025-3-26 22:10:52 | 只看該作者
32#
發(fā)表于 2025-3-27 04:15:33 | 只看該作者
Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations
33#
發(fā)表于 2025-3-27 08:45:54 | 只看該作者
34#
發(fā)表于 2025-3-27 09:29:04 | 只看該作者
Infinite-Dimensional Newton-Type Methodpplying the same principle as in Chaps. 1 and 2. After that, we confirm the existence of solutions by proving the contractility of the infinite-dimensional Newton-like operator with a residual form. Note that a projection into a finite-dimensional subspace and constructive error estimates of the projection play important and essential roles.
35#
發(fā)表于 2025-3-27 17:39:17 | 只看該作者
Basic Principle of the Verificationl improvements have since been made. This method consists of a projection and error estimations by the effective use of the compactness property of the relevant operator, and it can be represented in a rather generalized form in the examples below.
36#
發(fā)表于 2025-3-27 20:52:04 | 只看該作者
37#
發(fā)表于 2025-3-28 01:29:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:06:41 | 只看該作者
Other Problem Typesf second-order elliptic boundary value problems, where the linearized operator . lacks symmetry, whence a norm bound for .. cannot be computed via the spectrum of . or ....In this chapter we concentrate on the main ideas and partially will be a bit less extensive with technical details.
39#
發(fā)表于 2025-3-28 08:30:48 | 只看該作者
Eigenvalue Bounds for Self-Adjoint Eigenvalue Problemssical application is quantum physics, but also other fields like electro-dynamics (including optics) or statistical mechanics are governed by partial differential operators and related eigenvalue problems.
40#
發(fā)表于 2025-3-28 12:50:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内丘县| 新平| 台江县| 兴山县| 恩平市| 六安市| 荣昌县| 塘沽区| 浏阳市| 松阳县| 五家渠市| 靖州| 广安市| 格尔木市| 齐河县| 邵武市| 合作市| 玉山县| 西畴县| 于都县| 垫江县| 沙坪坝区| 龙海市| 平邑县| 西华县| 清镇市| 惠安县| 平原县| 太和县| 义马市| 石渠县| 留坝县| 读书| 灵石县| 扶绥县| 安塞县| 金阳县| 新田县| 金门县| 苏尼特右旗| 长武县|