找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Treatment of Free Boundary Value Problems / Numerische Behandlung freier Randwertaufgaben; Workshop on Numerica J. Albrecht,L. Co

[復(fù)制鏈接]
樓主: Debilitate
61#
發(fā)表于 2025-4-1 04:41:43 | 只看該作者
Mario Primiceriohe inorganic and the organic levels of organization, may give rise to a fundamental objection. Thus it may be argued that if the social denotes a specific form of association between human beings, it is at best only a “highly special case of association and as such ... restricted in significance, hu
62#
發(fā)表于 2025-4-1 06:03:46 | 只看該作者
63#
發(fā)表于 2025-4-1 11:14:42 | 只看該作者
64#
發(fā)表于 2025-4-1 16:33:44 | 只看該作者
65#
發(fā)表于 2025-4-1 21:17:02 | 只看該作者
66#
發(fā)表于 2025-4-2 01:02:19 | 只看該作者
,Das Einphasen-Stefan-Problem für ein Zwei-Temperaturen-W?rmeleitungsmodell: Der eindimensionale FalWe consider the one-phase Stefan problem for the pseudo-heat equation: The boundary conditions on the free boundary are different from those considered in [9]. We prove existence of a solution using Schauder’s fixed point theorem and develop two methods for the computation of the free boundary. Some numerical examples illustrate these methods.
67#
發(fā)表于 2025-4-2 04:21:08 | 只看該作者
68#
發(fā)表于 2025-4-2 09:12:33 | 只看該作者
A Weak Solution Method for a Class of Free Boundary Problems,A class of free boundary problems arising in electrochemical machining, porous flow and heat conduction can be set as the single equation (u.). + u. =0 holding on a fixed domain. This equation is discretised by finite differences and numerical results are presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稷山县| 林西县| 五河县| 黄冈市| 博客| 道真| 五台县| 阿克陶县| 静宁县| 油尖旺区| 韩城市| 汉中市| 万州区| 临颍县| 明水县| 临沭县| 娄烦县| 鄂温| 陆丰市| 岢岚县| 武宁县| 昌平区| 江安县| 辉南县| 汉源县| 锡林浩特市| 卓尼县| 中方县| 城市| 安溪县| 西盟| 临安市| 合山市| 昌都县| 通辽市| 澳门| 简阳市| 阿拉善右旗| 淮安市| 册亨县| 佛教|