找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Treatment of Eigenvalue Problems Vol. 3 / Numerische Behandlung von Eigenwertaufgaben Band; Workshop in Oberwolf J. Albrecht,L. C

[復(fù)制鏈接]
樓主: 瘦削
41#
發(fā)表于 2025-3-28 17:26:26 | 只看該作者
Ueber Eigenwerte Symmetrischer Membranen,le monotonicity arguments. In the present case of symmetric domains, it is important to know their conformal radius (mapping radius) at the center of symmetry. For some symmetric domains there is an exact elementary ratio of the conformal radii. Also, some symmetric membranes have the same first eigenvalue.
42#
發(fā)表于 2025-3-28 20:54:19 | 只看該作者
43#
發(fā)表于 2025-3-29 00:58:38 | 只看該作者
44#
發(fā)表于 2025-3-29 04:56:41 | 只看該作者
International Series of Numerical Mathematicshttp://image.papertrans.cn/n/image/669241.jpg
45#
發(fā)表于 2025-3-29 08:16:30 | 只看該作者
46#
發(fā)表于 2025-3-29 11:43:32 | 只看該作者
Hartree-Fock Methods a Realization of Variational Methods in Computing Energy Levels in Atoms,In this paper the well known Hartree-Fock methods are interpreted as variational methods. Since good and reliable upper bounds for the lowest eigenvalue of the Schr?dinger equation are very important, we discuss the different kinds of numerical errors during the computation and give some hints how to control them.
47#
發(fā)表于 2025-3-29 16:05:47 | 只看該作者
An Inclusion Principle for Eigenvalues,A general inclusion principle for eigenvalues with special properties (e.g. belonging to nonnegative eigenvectors) is developed and compared with Collatz’s theorem.
48#
發(fā)表于 2025-3-29 22:53:06 | 只看該作者
49#
發(fā)表于 2025-3-30 03:01:14 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:15 | 只看該作者
An Elementary Proof of Monotony of the Temple Quotients,Monotony of the Temple quotients has been proved recently by F. Goerisch and J. Albrecht in their common work [1]. In the present paper, another proof — let us call it an elementary one — of this fact is presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤水市| 漳平市| 泌阳县| 蓬莱市| 玉门市| 宣化县| 安陆市| 建德市| 五大连池市| 张家港市| 兰考县| 谷城县| 闽侯县| 六安市| 瑞昌市| 唐山市| 台东市| 甘泉县| 全州县| 桐庐县| 湘乡市| 尖扎县| 庆城县| 保德县| 青海省| 开阳县| 邓州市| 安康市| 包头市| 巴楚县| 闽侯县| 乳山市| 南木林县| 孟津县| 衡东县| 开平市| 大竹县| 通河县| 宜阳县| 连平县| 贡山|