找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Treatment and Analysis of Time-Fractional Evolution Equations; Bangti Jin,Zhi Zhou Book 2023 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 軍械
21#
發(fā)表于 2025-3-25 04:52:51 | 只看該作者
Finite Difference Methods on Uniform Meshes,hes using discrete Laplace transform, and derive sharp error bounds for nonsmooth and incompatible problem data. We also describe a correction scheme for the L1 scheme, similar to the corrected ., to restore the optimal convergence rate. The overall strategy for convergence analysis is similar to th
22#
發(fā)表于 2025-3-25 10:43:09 | 只看該作者
Nonnegativity Preservation,ata and the source .. It is natural to ask whether this property is inherited by certain spatially semidiscrete and fully discrete piecewise linear .s, including the standard Galerkin method, lumped mass method, and finite volume element method. In this chapter, we discuss the nonnegativity preserva
23#
發(fā)表于 2025-3-25 13:00:38 | 只看該作者
Subdiffusion with Time-Dependent Coefficients,n smoothing properties of the solution operators, often derived from Laplace transform of the governing equation and its discrete analogues. However, this idea does not directly apply to the case of a time-dependent elliptic operator, which we investigate in this chapter.
24#
發(fā)表于 2025-3-25 18:52:43 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:20 | 只看該作者
Spectral Galerkin Approximation,in Chaps.?.–., spectral methods with specially constructed basis functions can compensate the weakly singular behavior of solutions near ., and can approximate solutions of the time-fractional diffusion model accurately.
26#
發(fā)表于 2025-3-26 03:28:50 | 只看該作者
27#
發(fā)表于 2025-3-26 08:18:58 | 只看該作者
Optimal Control with Subdiffusion Constraint,analysis. In the last two chapters, we discuss the application of these results where nonsmooth data error estimates are central, i.e., a model optimal control problem with a subdiffusion constraint in this chapter, and a model inverse problem, backward subdiffusion, in Chap.?..
28#
發(fā)表于 2025-3-26 10:50:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:29:58 | 只看該作者
Bangti Jin,Zhi Zhounal cultures and core business practices (Birch & Batten, 2001;Milne, Owen & Tilt, 2001). Accordingly, they may downplay social issues, unless the values at stake just happen to coincide with their own personally held beliefs (Swanson, 1999). And even this ‘value coincidence’ may be uncommon (see Birch & Batten, 2001).
30#
發(fā)表于 2025-3-26 19:27:26 | 只看該作者
Bangti Jin,Zhi Zhounal cultures and core business practices (Birch & Batten, 2001;Milne, Owen & Tilt, 2001). Accordingly, they may downplay social issues, unless the values at stake just happen to coincide with their own personally held beliefs (Swanson, 1999). And even this ‘value coincidence’ may be uncommon (see Birch & Batten, 2001).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 腾冲县| 长岛县| 托克逊县| 黄平县| 佛教| 静宁县| 新竹县| 宜昌市| 长海县| 广南县| 威远县| 依兰县| 盐山县| 米林县| 合水县| 尼木县| 西贡区| 离岛区| 大城县| 依兰县| 孙吴县| 成都市| 福清市| 礼泉县| 荆门市| 连江县| 阿拉尔市| 晋江市| 北海市| 丰都县| 赤壁市| 新安县| 镇安县| 大邑县| 兰州市| 密山市| 北流市| 新竹市| 屏南县| 潜江市|