找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Range; The Field of Values Karl E. Gustafson,Duggirala K. M. Rao Book 1997 Springer Science+Business Media New York 1997 Eigenva

[復(fù)制鏈接]
查看: 35736|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:20:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Range
副標(biāo)題The Field of Values
編輯Karl E. Gustafson,Duggirala K. M. Rao
視頻videohttp://file.papertrans.cn/670/669164/669164.mp4
叢書名稱Universitext
圖書封面Titlebook: Numerical Range; The Field of Values  Karl E. Gustafson,Duggirala K. M. Rao Book 1997 Springer Science+Business Media New York 1997 Eigenva
描述The theories of quadratic forms and their applications appear in many parts of mathematics and the sciences. All students of mathematics have the opportunity to encounter such concepts and applications in their first course in linear algebra. This subject and its extensions to infinite dimen- sions comprise the theory of the numerical range W(T). There are two competing names for W(T), namely, the numerical range of T and the field of values for T. The former has been favored historically by the func- tional analysis community, the latter by the matrix analysis community. It is a toss-up to decide which is preferable, and we have finally chosen the former because it is our habit, it is a more efficient expression, and because in recent conferences dedicated to W(T), even the linear algebra commu- nity has adopted it. Also, one universally refers to the numerical radius, and not to the field of values radius. Originally, Toeplitz and Hausdorff called it the Wertvorrat of a bilinear form, so other good names would be value field or form values. The Russian community has referred to it as the Hausdorff domain. Murnaghan in his early paper first called it the region of the complex plan
出版日期Book 1997
關(guān)鍵詞Eigenvalue; Hilbert space; analytic function; functional analysis; operator; stability
版次1
doihttps://doi.org/10.1007/978-1-4613-8498-4
isbn_softcover978-0-387-94835-5
isbn_ebook978-1-4613-8498-4Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Numerical Range影響因子(影響力)




書目名稱Numerical Range影響因子(影響力)學(xué)科排名




書目名稱Numerical Range網(wǎng)絡(luò)公開度




書目名稱Numerical Range網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Range被引頻次




書目名稱Numerical Range被引頻次學(xué)科排名




書目名稱Numerical Range年度引用




書目名稱Numerical Range年度引用學(xué)科排名




書目名稱Numerical Range讀者反饋




書目名稱Numerical Range讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:02:21 | 只看該作者
Numerical Analysis,n ., meaning value field, and as we saw in Chapter 1, it originated as the continuous range of bilinear forms. Numerical analysis, on the other hand, usually connotes a conversion from continuous to discrete and then to a computation yielding precise numbers.
地板
發(fā)表于 2025-3-22 06:18:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:31:04 | 只看該作者
6#
發(fā)表于 2025-3-22 15:52:25 | 只看該作者
7#
發(fā)表于 2025-3-22 17:27:49 | 只看該作者
Book 1997rtunity to encounter such concepts and applications in their first course in linear algebra. This subject and its extensions to infinite dimen- sions comprise the theory of the numerical range W(T). There are two competing names for W(T), namely, the numerical range of T and the field of values for
8#
發(fā)表于 2025-3-22 22:41:43 | 只看該作者
9#
發(fā)表于 2025-3-23 02:16:59 | 只看該作者
10#
發(fā)表于 2025-3-23 09:19:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五华县| 无极县| 友谊县| 彭山县| 乌拉特中旗| 甘德县| 隆化县| 江华| 茂名市| 彰武县| 图片| 陆丰市| 毕节市| 晋城| 盖州市| 长丰县| 庆阳市| 洛宁县| 清原| 大庆市| 沁阳市| 和田县| 宜昌市| 交城县| 南京市| 咸丰县| 靖西县| 丰宁| 乐清市| 庆云县| 台前县| 牡丹江市| 镇康县| 五常市| 建阳市| 天门市| 慈溪市| 余姚市| 高淳县| 盱眙县| 建平县|