找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Probability; An Introduction with Gilles Pagès Textbook 2018 Springer Nature Switzerland AG 2018 Monte Carlo method.variance redu

[復(fù)制鏈接]
樓主: minuscule
11#
發(fā)表于 2025-3-23 13:46:46 | 只看該作者
12#
發(fā)表于 2025-3-23 14:10:28 | 只看該作者
13#
發(fā)表于 2025-3-23 20:32:34 | 只看該作者
Miscellany,cluded the proofs of two specific mathematical results (discrepancy of the Halton sequence and Pitman-Yor identity) which are not essential in the context of numerical applications but give the mathematical flavor of the underlying theories we use at several places in the book.
14#
發(fā)表于 2025-3-24 01:00:47 | 只看該作者
0172-5939 an extensive bibliography.This textbook provides a self-contained introduction to numerical methods in probability with a focus on applications to finance...Topics covered include the Monte Carlo simulation (including simulation of random variables, variance reduction, quasi-Monte Carlo simulation,
15#
發(fā)表于 2025-3-24 03:18:00 | 只看該作者
Textbook 2018lude the Monte Carlo simulation (including simulation of random variables, variance reduction, quasi-Monte Carlo simulation, and more recent developments such as the multilevel paradigm), stochastic optimization and approximation, discretization schemes of stochastic differential equations, as well
16#
發(fā)表于 2025-3-24 07:41:04 | 只看該作者
Simulation of Random Variables,of pseudorandom numbers, the inverse distribution function method and von Neumann’s acceptance-rejection method, with applications to the simulation of Gaussian vectors, (fractional) Brownian motion and Poisson process paths.
17#
發(fā)表于 2025-3-24 13:09:33 | 只看該作者
The Quasi-Monte Carlo Method,-random numbers are replaced by deterministic computable sequences of .-valued vectors which, once substituted . in place of pseudo-random numbers in the Monte Carlo method, may significantly speed up its rate of convergence, making it . independent of the structural dimension . of the simulation.
18#
發(fā)表于 2025-3-24 18:33:56 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:49 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿松县| 中牟县| 伊通| 阜康市| 老河口市| 类乌齐县| 甘孜| 连州市| 贡嘎县| 铁岭县| 延川县| 响水县| 仁寿县| 眉山市| 南充市| 巴中市| 临沧市| 宁城县| 榆树市| 福鼎市| 吉水县| 黎川县| 邵东县| 台江县| 大姚县| 郁南县| 富平县| 西安市| 贞丰县| 山东省| 兴城市| 和政县| 洛隆县| 冷水江市| 天柱县| 广宁县| 眉山市| 乐安县| 扶余县| 壶关县| 安新县|