找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Optimization with Computational Errors; Alexander J. Zaslavski Book 2016 Springer International Publishing Switzerland 2016 nonl

[復制鏈接]
樓主: hearing-aid
31#
發(fā)表于 2025-3-26 22:14:55 | 只看該作者
Continuous Subgradient Method,w that our algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how much time one needs for this.
32#
發(fā)表于 2025-3-27 03:06:26 | 只看該作者
33#
發(fā)表于 2025-3-27 06:58:19 | 只看該作者
34#
發(fā)表于 2025-3-27 11:52:48 | 只看該作者
Subgradient Projection Algorithm,f convex–concave functions, under the presence of computational errors. We show that our algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution c
35#
發(fā)表于 2025-3-27 14:40:53 | 只看該作者
The Mirror Descent Algorithm,erate a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how many iterates one needs for this.
36#
發(fā)表于 2025-3-27 19:06:56 | 只看該作者
Gradient Algorithm with a Smooth Objective Function,rs. We show that the algorithm generates a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how many iterates one needs for this.
37#
發(fā)表于 2025-3-28 00:49:30 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:01 | 只看該作者
39#
發(fā)表于 2025-3-28 06:24:41 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
屯门区| 泊头市| 固镇县| 湖口县| 茶陵县| 行唐县| 辽宁省| 南宫市| 崇义县| 锦州市| 同江市| 长垣县| 会泽县| 宝坻区| 曲沃县| 法库县| 海晏县| 特克斯县| 金溪县| 石阡县| 井研县| 宣恩县| 崇义县| 葵青区| 丹凤县| 屯昌县| 榆树市| 黄骅市| 凤阳县| 平谷区| 台湾省| 哈尔滨市| 东辽县| 钦州市| 铜鼓县| 武鸣县| 乌拉特后旗| 察哈| 开阳县| 葫芦岛市| 沐川县|