找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods of Approximation Theory/Numerische Methoden der Approximationstheorie; Workshop on Numerica Lothar Collatz,Günther Meinar

[復(fù)制鏈接]
樓主: ARGOT
31#
發(fā)表于 2025-3-26 22:42:32 | 只看該作者
32#
發(fā)表于 2025-3-27 01:47:14 | 只看該作者
Strong Unicity Constants in Chebyshev Approximation,hebyshev spaces. Results of this type were proved by several authors in the special case of Haar spaces and spline spaces. Strong unicity constants are used to obtain error estimations for approximations computed by Remez type algorithms.
33#
發(fā)表于 2025-3-27 05:42:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:45:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:01:11 | 只看該作者
36#
發(fā)表于 2025-3-27 18:34:24 | 只看該作者
37#
發(fā)表于 2025-3-27 23:16:13 | 只看該作者
Knot-Elimination; Reversal of the Oslo Algorithm,Given a spline function of any order, we consider the possibility of approximating it, to within an acceptable tolerance, by a spline function of the same order but with fewer knots, and of achieving this end through a finite algorithm.
38#
發(fā)表于 2025-3-28 04:29:45 | 只看該作者
Fourier Methods in Practical Approximation,On the basis of the Carathéodory-Fejér method (in conjunction with some auxiliary tools) we obtain simple but good substitutes for the Zolotarev polynomials and certain generalizations. Thereby we give rather sharp error bounds for the approximations involved. Further we point out certain relations to summability theory.
39#
發(fā)表于 2025-3-28 06:17:58 | 只看該作者
40#
發(fā)表于 2025-3-28 12:22:04 | 只看該作者
On a Gaussian Quadrature Formula for Entire Functions of Exponential Type,Given a system of n distinct points x., x.,..., x. let
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰台区| 恭城| 贵南县| 聂拉木县| 遂溪县| 龙陵县| 观塘区| 香河县| 连南| 冕宁县| 江西省| 景德镇市| 兰考县| 杭州市| 本溪市| 宝坻区| 泗水县| 康保县| 河源市| 东海县| 策勒县| 神农架林区| 内江市| 龙井市| 湟中县| 仙桃市| 卢湾区| 白朗县| 上虞市| 罗江县| 孟连| 霍邱县| 连州市| 吉木萨尔县| 汉中市| 绥中县| 海口市| 广南县| 云林县| 白城市| 南开区|