找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods in Multidimensional Radiative Transfer; Guido Kanschat,Erik Meink?hn,Rainer Wehrse Conference proceedings 2009 Springer-

[復(fù)制鏈接]
查看: 10388|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:19:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Numerical Methods in Multidimensional Radiative Transfer
編輯Guido Kanschat,Erik Meink?hn,Rainer Wehrse
視頻videohttp://file.papertrans.cn/670/669120/669120.mp4
概述Includes supplementary material:
圖書封面Titlebook: Numerical Methods in Multidimensional Radiative Transfer;  Guido Kanschat,Erik Meink?hn,Rainer Wehrse Conference proceedings 2009 Springer-
描述Traditionally, radiative transfer has been the domain of astrophysicists and climatologists. In nuclear technology one has been dealing with the ana- gous equations of neutron transport. In recent years, applications of radiative transferincombustionmachinedesignandinmedicinebecamemoreandmore important. In all these disciplines one uses the radiative transfer equation to model the formation of the radiation ?eld and its propagation. For slabs and spheres e?ective algorithms for the solution of the transfer equation have been ava- able for quite some time. In addition, the analysis of the equation is quite well developed. Unfortunately, in many modern applications the approximation of a 1D geometry is no longer adequate and one has to consider the full 3D dependencies. This makes the modeling immensely more intricate. The main reasons for the di?culties result from the fact that not only the dimension of the geometric space has to be increased but one also has to employ two angle variables (instead of one) and very often one has to consider frequency coupling (due to motion or redistribution in spectral lines). In actual cal- lations this leads to extremely large matrices which, in
出版日期Conference proceedings 2009
關(guān)鍵詞Climatology; Simulation; finite element method; model; modeling; numerical analysis; physics; radiation fie
版次1
doihttps://doi.org/10.1007/978-3-540-85369-5
isbn_softcover978-3-540-85368-8
isbn_ebook978-3-540-85369-5
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Numerical Methods in Multidimensional Radiative Transfer影響因子(影響力)




書目名稱Numerical Methods in Multidimensional Radiative Transfer影響因子(影響力)學(xué)科排名




書目名稱Numerical Methods in Multidimensional Radiative Transfer網(wǎng)絡(luò)公開度




書目名稱Numerical Methods in Multidimensional Radiative Transfer網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Methods in Multidimensional Radiative Transfer被引頻次




書目名稱Numerical Methods in Multidimensional Radiative Transfer被引頻次學(xué)科排名




書目名稱Numerical Methods in Multidimensional Radiative Transfer年度引用




書目名稱Numerical Methods in Multidimensional Radiative Transfer年度引用學(xué)科排名




書目名稱Numerical Methods in Multidimensional Radiative Transfer讀者反饋




書目名稱Numerical Methods in Multidimensional Radiative Transfer讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:28:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:09:55 | 只看該作者
978-3-540-85368-8Springer-Verlag Berlin Heidelberg 2009
地板
發(fā)表于 2025-3-22 06:14:35 | 只看該作者
Solution of Radiative Transfer Problems with Finite Elements,inite element discretizations for the integral operator in the angular variable and the transport operator in space are discussed. Adaptive algorithms and error estimates are explained. The structure of the resulting discrete linear system is analyzed and solution methods are suggested.
5#
發(fā)表于 2025-3-22 09:19:20 | 只看該作者
6#
發(fā)表于 2025-3-22 15:48:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:33 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:43 | 只看該作者
Stephen Wright,Simon Arridge,Martin Schweigerehension of the most important statements included in this book needs only a very elementary background in algebra, ideal theory and general topology. In order to emphasize the elementary character of our treatment, we have recalled several well known definitions and, sometimes, even the proofs of the first p978-3-642-88503-7978-3-642-88501-3
9#
發(fā)表于 2025-3-23 01:52:14 | 只看該作者
10#
發(fā)表于 2025-3-23 08:58:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叙永县| 高阳县| 巴林左旗| 道孚县| 石城县| 平果县| 鄯善县| 靖安县| 绍兴县| 沙雅县| 二连浩特市| 马公市| 波密县| 老河口市| 富阳市| 聂荣县| 崇文区| 四川省| 丹阳市| 兴义市| 正镶白旗| 华池县| 永新县| 横山县| 保定市| 集安市| 峨山| 五原县| 中江县| 临夏市| 图木舒克市| 高雄县| 宝坻区| 定兴县| 民乐县| 盱眙县| 晋江市| 南通市| 东山县| 丰台区| 贡嘎县|