找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Nonlinear Partial Differential Equations; S?ren Bartels Book 2015 Springer International Publishing Switzerland 2015

[復(fù)制鏈接]
樓主: 和尚吃肉片
31#
發(fā)表于 2025-3-26 22:16:38 | 只看該作者
Harmonic MapsThe solutions are vector fields that describe the orientation of the molecules or the magnetization field. A simple model problem defines harmonic maps in the sphere as minimizers of the Dirichlet energy subject to a pointwise unit-length constraint. Lowest-order conforming finite element methods pr
32#
發(fā)表于 2025-3-27 03:32:53 | 只看該作者
Bending Problems fourth-order problems. In the case of small displacements, a linear partial differential equation provides accurate approximations, but finite element methods have to be carefully developed to avoid locking phenomena. In the case of large deformations, a pointwise isometry constraint has to be inco
33#
發(fā)表于 2025-3-27 06:18:54 | 只看該作者
Nonconvexity and Microstructurel descriptions of crystalline phase transitions that enable the shape-memory effect of smart materials. The ill-posed minimization problems capture important effects and relaxation theories define well-posed modifications of the functionals. The problems related to direct numerical treatment of the
34#
發(fā)表于 2025-3-27 10:48:28 | 只看該作者
Free Discontinuitiesdients of functions of bounded variation are certain measures and the functions may jump across lower-dimensional subsets. The properties of this function space enable the mathematical modeling of fracture and crack formation of materials within the framework of the calculus of variations. Qualitati
35#
發(fā)表于 2025-3-27 15:51:06 | 只看該作者
Elastoplasticitymathematical descriptions lead to nonsmooth evolution problems that can be approximated by sequences of convex minimization problems. Related quasioptimal a?priori and a?posteriori error estimates for low-order finite element methods are derived. The numerical implementation requires solving a nonli
36#
發(fā)表于 2025-3-27 18:11:57 | 只看該作者
37#
發(fā)表于 2025-3-28 00:57:01 | 只看該作者
38#
發(fā)表于 2025-3-28 05:02:48 | 只看該作者
39#
發(fā)表于 2025-3-28 07:04:11 | 只看該作者
40#
發(fā)表于 2025-3-28 12:26:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾城县| 宿迁市| 辽宁省| 台湾省| 武川县| 扬中市| 红原县| 安达市| 宁国市| 新民市| 邯郸县| 革吉县| 连江县| 广汉市| 吕梁市| 观塘区| 陆河县| 南宁市| 松桃| 新邵县| 漾濞| 罗田县| 吉隆县| 嘉善县| 南江县| 濮阳县| 敖汉旗| 普陀区| 遵义市| 汾西县| 柳江县| 东乡族自治县| 临洮县| 建宁县| 姜堰市| 怀集县| 桦甸市| 仁寿县| 哈密市| 逊克县| 广西|