找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Grid Equations; Volume I Direct Meth Aleksandr A. Samarskii,Evgenii S. Nikolaev Book 1989 Birkh?user Verlag Basel 198

[復制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 10:42:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:14 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaevc Flow).Presents examples and open problems for foliated sur.Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achie
13#
發(fā)表于 2025-3-23 18:16:36 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaeveaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
14#
發(fā)表于 2025-3-24 00:47:06 | 只看該作者
eaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
15#
發(fā)表于 2025-3-24 05:09:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:07 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:00 | 只看該作者
https://doi.org/10.1007/978-3-0348-9272-8Approximation; Cauchy problem; algebra; difference equation; differential equation; linear algebra; matric
18#
發(fā)表于 2025-3-24 18:45:14 | 只看該作者
The Elimination Method,In this chapter, we study several variants of a direct method for solving grid equations — the elimination method. The application of the method to the solution of both scalar and vector equations is considered.
19#
發(fā)表于 2025-3-24 19:19:26 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:59 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
揭阳市| 海淀区| 太和县| 定结县| 砀山县| 灵宝市| 汝南县| 老河口市| 丽水市| 家居| 出国| 株洲市| 涪陵区| 山东省| 息烽县| 崇州市| 潜江市| 来安县| 满洲里市| 托克托县| 英超| 梓潼县| 福安市| 安庆市| 五河县| 郴州市| 婺源县| 河北省| 钦州市| 土默特左旗| 华宁县| 枣庄市| 平顺县| 格尔木市| 车险| 焦作市| 岳普湖县| 瑞金市| 九龙城区| 临江市| 咸宁市|