找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Grid Equations; Volume I Direct Meth Aleksandr A. Samarskii,Evgenii S. Nikolaev Book 1989 Birkh?user Verlag Basel 198

[復(fù)制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 10:42:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:14 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaevc Flow).Presents examples and open problems for foliated sur.Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achie
13#
發(fā)表于 2025-3-23 18:16:36 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaeveaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
14#
發(fā)表于 2025-3-24 00:47:06 | 只看該作者
eaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
15#
發(fā)表于 2025-3-24 05:09:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:07 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:00 | 只看該作者
https://doi.org/10.1007/978-3-0348-9272-8Approximation; Cauchy problem; algebra; difference equation; differential equation; linear algebra; matric
18#
發(fā)表于 2025-3-24 18:45:14 | 只看該作者
The Elimination Method,In this chapter, we study several variants of a direct method for solving grid equations — the elimination method. The application of the method to the solution of both scalar and vector equations is considered.
19#
發(fā)表于 2025-3-24 19:19:26 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道真| 车致| 万源市| 甘洛县| 梁平县| 揭东县| 通州市| 延长县| 潞城市| 简阳市| 新河县| 观塘区| 韶关市| 天峻县| 成武县| 阜康市| 秦皇岛市| 双桥区| 崇明县| 长顺县| 兰溪市| 泸定县| 县级市| 利辛县| 加查县| 泾阳县| 河北省| 平潭县| 建宁县| 农安县| 林口县| 郧西县| 绵竹市| 平昌县| 长葛市| 平邑县| 成武县| 葫芦岛市| 滦平县| 凌云县| 湖北省|