找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Conservation Laws; Randall J. LeVeque Book 19901st edition Birkh?user Basel 1990 numerical method.research.shock wav

[復(fù)制鏈接]
樓主: 斷巖
21#
發(fā)表于 2025-3-25 03:41:43 | 只看該作者
Some Scalar Examplesvious chapter. The first of these examples (traffic flow) should also help develop some physical intuition that is applicable to the more complicated case of gas dynamics, with gas molecules taking the place of cars. This application is discussed in much more detail in Chapter 3 of Whitham[97]. The
22#
發(fā)表于 2025-3-25 09:27:42 | 只看該作者
23#
發(fā)表于 2025-3-25 13:22:38 | 只看該作者
The Riemann problem for the Euler equationst the details are messier. Instead, I will concentrate on discussing one new feature seen here, contact discontinuities, and see how we can take advantage of the linear degeneracy of one field to simplify the solution process for a general Riemann problem. Full details are available in many sources,
24#
發(fā)表于 2025-3-25 15:56:28 | 只看該作者
Godunov’s Methodbtained a natural generalization of the upwind method by diagonalizing the system, yielding the method (10.60). For nonlinear systems the matrix of eigenvectors is not constant, and this same approach does not work directly. In this chapter we will study a generalization in which the local character
25#
發(fā)表于 2025-3-25 22:16:37 | 只看該作者
26#
發(fā)表于 2025-3-26 04:07:28 | 只看該作者
27#
發(fā)表于 2025-3-26 04:47:10 | 只看該作者
Semi-discrete Methodsation process in two stages, first discretizing only in space, leaving the problem continuous in time. This leads to a system of ordinary differential equations in time, called the “semi-discrete equations”. We then discretize in time using any standard numerical method for systems of ordinary diffe
28#
發(fā)表于 2025-3-26 08:59:28 | 只看該作者
29#
發(fā)表于 2025-3-26 16:37:10 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桑日县| 谢通门县| 定结县| 鱼台县| 榆中县| 黄陵县| 盐津县| 东至县| 西藏| 娱乐| 贡觉县| 安溪县| 红河县| 保德县| 河南省| 六盘水市| 鸡东县| 西安市| 曲阳县| 辽中县| 新丰县| 吴忠市| 武川县| 法库县| 长治市| 武平县| 尉氏县| 北流市| 通道| 河西区| 克什克腾旗| 邳州市| 晋江市| 遂昌县| 莆田市| 太仓市| 香港 | 江城| 邓州市| 资中县| 壤塘县|