找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: NumericalInfinities and Infinitesimals in Optimization; Yaroslav D. Sergeyev,Renato De Leone Book 2022 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: CAP
11#
發(fā)表于 2025-3-23 11:32:03 | 只看該作者
On the Use of Grossone Methodology for Handling Priorities in Multi-objective Evolutionary Optimizatinite and infinitesimal numbers. Most interestingly, this technique can be easily embedded in most of the existing evolutionary algorithms, without altering their core logic. Three algorithms for MPL-MOPs are shown: the first two, called PC-NSGA-II and PC-MOEA/D, are the generalization of NSGA-II an
12#
發(fā)表于 2025-3-23 14:36:34 | 只看該作者
Exact Numerical Differentiation on?the?Infinity Computer and?Applications in?Global Optimizationise quadratic support functions and their convergence conditions are discussed. All the methods are implemented both in the traditional floating-point arithmetic and in the Infinity Computing framework.
13#
發(fā)表于 2025-3-23 21:14:30 | 只看該作者
Comparing Linear and Spherical Separation Using Grossone-Based Numerical Infinities in Classificatio selected far from both the two sets, obtaining in this way a kind of linear separation. This approach is easily extensible to the margin concept (of the type adopted in the Support Vector Machine technique) and to MIL problems. Some numerical results are reported on classical binary datasets drawn
14#
發(fā)表于 2025-3-23 23:37:29 | 只看該作者
Computing Optimal Decision Strategies Using the Infinity Computer: The Case of Non-Archimedean Zero-Simplex algorithm called Gross-Matrix-Simplex. Four numerical experiments served as test cases to verify the effectiveness and correctness of the new algorithm. Moreover, these studies helped in stressing the difference between numerical and symbolic calculations: indeed, the solution output by the
15#
發(fā)表于 2025-3-24 03:38:07 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:14 | 只看該作者
NumericalInfinities and Infinitesimals in Optimization
17#
發(fā)表于 2025-3-24 10:49:57 | 只看該作者
2194-7287 omputerscience..“Mathematicians have never been comfortable handling infinities… But an entirely new type of mathematics looks set to by-pass the problem… Today, Yaroslav Sergeyev, a mathematician at the Univer978-3-030-93644-0978-3-030-93642-6Series ISSN 2194-7287 Series E-ISSN 2194-7295
18#
發(fā)表于 2025-3-24 16:58:42 | 只看該作者
Marco Cococcioni,Alessandro Cudazzo,Massimo Pappalardo,Yaroslav D. Sergeyev
19#
發(fā)表于 2025-3-24 21:34:18 | 只看該作者
Manlio Gaudioso,Giovanni Giallombardo,Marat S. Mukhametzhanov
20#
發(fā)表于 2025-3-24 23:46:37 | 只看該作者
Leonardo Lai,Lorenzo Fiaschi,Marco Cococcioni,Kalyanmoy Deb
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济阳县| 密山市| 墨竹工卡县| 呼伦贝尔市| 文化| 尼勒克县| 辽阳市| 澜沧| 本溪| 新乡县| 莆田市| 阳朔县| 临清市| 新干县| 宁南县| 扬中市| 剑川县| 休宁县| 阿拉善右旗| 阳朔县| 甘孜县| 嘉义市| 博客| 军事| 巨鹿县| 兴城市| 德清县| 重庆市| 福建省| 泰和县| 宁化县| 偃师市| 奇台县| 鸡东县| 屏南县| 微山县| 资阳市| 堆龙德庆县| 西乡县| 河北省| 肥乡县|