找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Boundary Value ODEs; Proceedings of an In Uri M. Ascher,Robert D. Russell Conference proceedings 1985 Birkh?user Boston, Inc. 198

[復(fù)制鏈接]
樓主: infection
21#
發(fā)表于 2025-3-25 05:06:15 | 只看該作者
22#
發(fā)表于 2025-3-25 08:30:24 | 只看該作者
23#
發(fā)表于 2025-3-25 13:09:29 | 只看該作者
A Runge-Kutta-Nystrom Method for Delay Differential EquationsLet consider the following boundary value problem for second order delay differential systems: . y: IR → IR., f: [ t.,b ]×IR. → IR and τ(t), σ(t)>0.
24#
發(fā)表于 2025-3-25 18:52:54 | 只看該作者
25#
發(fā)表于 2025-3-25 23:24:49 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:11 | 只看該作者
Two Families of Symmetric Difference Schemes for Singular Perturbation Problemses, which are equivalent to certain collocation schemes based on Gauss and Lobatto points, are used. The performance of these two families of schemes is compared. while Lobatto schemes are more accurate for some classes of problems, Gauss schemes are more stable in general.
27#
發(fā)表于 2025-3-26 05:29:32 | 只看該作者
Calculating the Loss of Stability by Transient Methods, with Application to Parabolic Partial Differtains ODE systems, thereby enabling the usage of ODE methods. Some novel results are presented dealing with transient methods, i.e. methods that handle the steady state as a special periodic solution with amplidude zero. The results include the calculation of stability of periodic orbits as well as the computation of points of loss of stability.
28#
發(fā)表于 2025-3-26 10:11:35 | 只看該作者
29#
發(fā)表于 2025-3-26 12:41:51 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:10 | 只看該作者
On Non-Invertible Boundary Value Problemste the sensitivity of the problem with respect to perturbations of a relevant subproblem. We also discuss a numerical method that computes such sub-condition number to demonstrate its applicability. Finally we give a number of numerical examples to illustrate both the theory and the computational method.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中方县| 肇东市| 凤阳县| 申扎县| 福海县| 酉阳| 桂阳县| 灵武市| 东莞市| 定兴县| 永善县| 梓潼县| 襄汾县| 孙吴县| 庆阳市| 靖安县| 德州市| 习水县| 长海县| 郎溪县| 勐海县| 太保市| 牙克石市| 镇坪县| 尉氏县| 阿拉善盟| 邻水| 宜城市| 镇赉县| 巴林左旗| 陕西省| 舒城县| 榆树市| 翼城县| 陇西县| 宜良县| 黄陵县| 澜沧| 峨山| 德昌县| 中西区|