找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Boundary Value ODEs; Proceedings of an In Uri M. Ascher,Robert D. Russell Conference proceedings 1985 Birkh?user Boston, Inc. 198

[復制鏈接]
樓主: infection
11#
發(fā)表于 2025-3-23 13:12:17 | 只看該作者
12#
發(fā)表于 2025-3-23 16:47:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:45:28 | 只看該作者
A Finite Difference Method for the Basic Stationary Semiconductor Device Equationsese equations model potential distribution, carrier concentration and current flow in an arbitrary one-dimensional semiconductor device and they consist of three second order ordinary differential equations subject to boundary conditions. A small parameter appears as multiplier of the second derivat
14#
發(fā)表于 2025-3-23 22:13:35 | 只看該作者
Solution of Premixed and Counterflow Diffusion Flame Problems by Adaptive Boundary Value Methodscs with complicated transport phenomena. Two of the simplest models in which these processes are studied are the premixed laminar flame and the counterflow diffusion flame. In both cases the flow is essentially one-dimensional and the governing equations can be reduced to a set of coupled nonlinear
15#
發(fā)表于 2025-3-24 06:06:54 | 只看該作者
Improving the Performance of Numerical Methods for Two Point Boundary Value Problemshe convergence requirements of the corresponding iteration schemes (used to solve the discretized problem) has been investigated. Appropriate modifications to these methods which permit the effective solution of such problems will be discussed. We will also identify a subfamily of the Runge-Kutta me
16#
發(fā)表于 2025-3-24 08:06:49 | 只看該作者
17#
發(fā)表于 2025-3-24 13:16:09 | 只看該作者
18#
發(fā)表于 2025-3-24 17:51:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:17:02 | 只看該作者
20#
發(fā)表于 2025-3-25 01:00:31 | 只看該作者
Riccati Transformations: When and How to Use?In this paper the problem of interest is a well-conditioned n-dimensional boundary value problem (BVP): .subject to the boundary conditions . (B.,B. ∈IR. and b ∈ IR.).
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
连州市| 江孜县| 平塘县| 伊宁县| 维西| 游戏| 贡嘎县| 伊通| 新余市| 焦作市| 大连市| 黑山县| 班戈县| 哈尔滨市| 达拉特旗| 东兰县| 保德县| 津市市| 龙胜| 赣州市| 仙桃市| 历史| 蒲江县| 馆陶县| 沂源县| 夹江县| 道真| 凌海市| 莱芜市| 瓮安县| 忻州市| 庆安县| 平原县| 黔西县| 宁陕县| 教育| 修文县| 普陀区| 买车| 介休市| 太谷县|