找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory in Science and Communication; With Applications in Manfred R. Schroeder Book 19841st edition Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: 貪吃的人
21#
發(fā)表于 2025-3-25 04:51:28 | 只看該作者
Primesds counter-intuitive and, in fact, it isn’t true, as Euclid demonstrated a long time ago. Actually, he did it without demonstrating any primes — he just showed that assuming a finite number of primes leads to a neat contradiction.
22#
發(fā)表于 2025-3-25 10:46:14 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:42 | 只看該作者
24#
發(fā)表于 2025-3-25 16:41:25 | 只看該作者
25#
發(fā)表于 2025-3-25 20:36:53 | 只看該作者
Quadratic Congruencesnication tasks as certified receipts, remote signing of contracts, and coin tossing — or playing poker over the telephone (discussed in Chap. 19). Finally, quadratic congruences are needed in the definition of pseudoprimes, which were once almost as important as actual primes in digital encryption (see Chap. 19).
26#
發(fā)表于 2025-3-26 02:20:10 | 只看該作者
IntroductionHermann Minkowski, being more modest than Kronecker, once said “The primary source (Urquell) of all of mathematics are the integers.” Today, integer arithmetic is important in a wide spectrum of human activities and natural phenomena amenable to mathematic analysis.
27#
發(fā)表于 2025-3-26 08:08:38 | 只看該作者
The Natural NumbersHere we encounter such basic concepts as ., ., and ., and we learn the very fundamental fact that the composites can be represented in a . way as a product of primes.
28#
發(fā)表于 2025-3-26 12:06:43 | 只看該作者
29#
發(fā)表于 2025-3-26 13:40:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:07 | 只看該作者
Knapsack EncryptionAs a diversion we return in this chapter to another (once) promising public-key encryption scheme using a trap-door function: . It, too, is based on residue arithmetic, but uses multiplication rather than exponentiation, making it easier to instrument and theoretically more transparent.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂尔多斯市| 二连浩特市| 基隆市| 秭归县| 海淀区| 临沧市| 灵川县| 旅游| 淅川县| 博客| 凌源市| 新津县| 密山市| 都江堰市| 抚远县| 英德市| 香港| 岳池县| 娱乐| 丹江口市| 贺兰县| 伊金霍洛旗| 搜索| 曲水县| 巨鹿县| 本溪市| 桂东县| 安塞县| 维西| 房山区| 元阳县| 清原| 北辰区| 交口县| 襄垣县| 阿尔山市| 正镶白旗| 新竹县| 留坝县| 大冶市| 台南县|