找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory in Memory of Eduard Wirsing; Helmut Maier,J?rn Steuding,Rasa Steuding Book 2023 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Levelheaded
41#
發(fā)表于 2025-3-28 16:53:37 | 只看該作者
Estimates for ,-Dimensional Spherical Summations of Arithmetic Functions of the GCD and LCM,Let . be a fixed integer. We consider sums of type ., taken over the .-dimensional spherical region ., where . is a given function. In particular, we deduce asymptotic formulas with remainder terms for the spherical summations . and ., involving the GCD and LCM of the integers ., where . belongs to certain classes of functions.
42#
發(fā)表于 2025-3-28 20:28:02 | 只看該作者
The Rational Points Close to a Space Curve,We discuss methods to find some upper bound for the number of rational points . with least common denominator . which lie close to an arc of a space curve, scaled by a factor ..
43#
發(fā)表于 2025-3-29 01:37:31 | 只看該作者
44#
發(fā)表于 2025-3-29 04:50:27 | 只看該作者
45#
發(fā)表于 2025-3-29 11:00:32 | 只看該作者
46#
發(fā)表于 2025-3-29 15:26:43 | 只看該作者
On the Greatest Common Divisor of a Number and Its Sum of Divisors, II,Let .. We collect known results about the distribution of . and establish a new, sharp estimate for . when . grows faster than any power of . but .. Taken together, these results determine the order of magnitude of . whenever ..
47#
發(fā)表于 2025-3-29 16:17:24 | 只看該作者
Helmut Maier,J?rn Steuding,Rasa SteudingA volume dedicated to number theorist Eduard Wirsing.A unique collection of research articles on mathematical themes dear to Eduard Wirsing.Contains contributions on the scientific life of Eduard Wirs
48#
發(fā)表于 2025-3-29 23:43:33 | 只看該作者
49#
發(fā)表于 2025-3-30 00:24:20 | 只看該作者
Personal Memories,r subject. His lecture on Analytic Number Theory was in late afternoon after the “Praktikum” belonging to the physics course. After the experiment we had to perform, being a not very practical person, his lecture came to me as a liberation.
50#
發(fā)表于 2025-3-30 06:38:49 | 只看該作者
Diophantine Analysis Around ,dified Bessel functions. In this paper our diophantine analysis around . takes its starting point with its rational convergents and deals with an asymptotic approximation formula for . and with the construction of a sequence of quadratically irrational approximations using these convergents. Finally
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹰潭市| 佳木斯市| 吉木乃县| 卢湾区| 高要市| 梅州市| 五指山市| 延长县| 嫩江县| 响水县| 定兴县| 杭锦后旗| 清河县| 叙永县| 定兴县| 远安县| 余江县| 黔江区| 湘西| 安阳市| 宜兰市| 乌兰县| 确山县| 镇安县| 道真| 容城县| 大石桥市| 天津市| 通许县| 密云县| 临泉县| 阳东县| 孟州市| 烟台市| 巴青县| 呈贡县| 延津县| 邢台市| 武平县| 富源县| 和田县|