找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Analysis; A Collection of Pape Paul Turán Book 1969 Springer Science+Business Media New York 1969 calculus.number theory.

[復制鏈接]
樓主: cerebellum
21#
發(fā)表于 2025-3-25 04:57:40 | 只看該作者
22#
發(fā)表于 2025-3-25 07:36:22 | 只看該作者
How to Extend A Calculus,reated whether and in which measure a given calculus can be extended. In view of the extensiveness of the subject 1 must restrict myself to some indication. The method developed herewith can be applied in many diversified branches, a.o. in the analytic theory of numbers and for this reason it may fi
23#
發(fā)表于 2025-3-25 13:01:54 | 只看該作者
Book 196923 and by O. Toeplitz in a lecture in 1930 as the deepest part of mathe- matics. Clarification first began with the papers of Hadamard, de la Vallee Poussin, and von Mangoldt. At the end ofthe foreword to his work" Handbuch der Lehre von der Verteilung der Primzahlen" which appeared in 1909, Landau
24#
發(fā)表于 2025-3-25 16:50:30 | 只看該作者
tter of 1823 and by O. Toeplitz in a lecture in 1930 as the deepest part of mathe- matics. Clarification first began with the papers of Hadamard, de la Vallee Poussin, and von Mangoldt. At the end ofthe foreword to his work" Handbuch der Lehre von der Verteilung der Primzahlen" which appeared in 1909, Landau 978-1-4613-7184-7978-1-4615-4819-5
25#
發(fā)表于 2025-3-25 22:36:54 | 只看該作者
How to Extend A Calculus,s that in his correspondence he gave as well sharp criticism as warm encouragement which altered the contents considerably. Especially the period, in which I was fortunately enough to work with him at G?ttingen, contributed beyond measure to my mathematical development. The present paper would perha
26#
發(fā)表于 2025-3-26 01:17:12 | 只看該作者
27#
發(fā)表于 2025-3-26 07:37:29 | 只看該作者
28#
發(fā)表于 2025-3-26 09:42:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:14:06 | 只看該作者
On Local Theorems for Additive Number-Theoretic Functions,s . = 1, 2, … is called additive if .(.) = .(.) + .(.) provided (., .) = 1. The theory of integral limit laws for these functions has been developed by many authors. As to local laws which are generally speaking deeper very little is known. In this case it is a matter of finding an asymptotic expres
30#
發(fā)表于 2025-3-26 16:56:32 | 只看該作者
,The “Pits Effect” for the Integral Function,,ting a ‘random’ factor of the form ± 1. Littlewood and Offord [1] have shown that ‘most’ .(.) behave with great crudity and violence. If we erect an ordinate |.(.)| at the point . of the .-plane, then the resulting surface is an exponentially rapidly rising bowl, approximately of revolution, with ex
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 18:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴隆县| 建昌县| 栖霞市| 嘉定区| 漠河县| 长子县| 航空| 贡觉县| 达日县| 镇平县| 玉门市| 濮阳县| 上饶市| 泰宁县| 贺州市| 三河市| 伊春市| 洪泽县| 铁力市| 利辛县| 来宾市| 原阳县| 营山县| 石楼县| 万安县| 磴口县| 长海县| 图木舒克市| 洪江市| 天峻县| 博客| 天水市| 城步| 乌什县| 胶州市| 敦化市| 灵璧县| 彰化市| 仙居县| 密山市| 浮梁县|