找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Analysis; A Collection of Pape Paul Turán Book 1969 Springer Science+Business Media New York 1969 calculus.number theory.

[復(fù)制鏈接]
樓主: cerebellum
21#
發(fā)表于 2025-3-25 04:57:40 | 只看該作者
22#
發(fā)表于 2025-3-25 07:36:22 | 只看該作者
How to Extend A Calculus,reated whether and in which measure a given calculus can be extended. In view of the extensiveness of the subject 1 must restrict myself to some indication. The method developed herewith can be applied in many diversified branches, a.o. in the analytic theory of numbers and for this reason it may fi
23#
發(fā)表于 2025-3-25 13:01:54 | 只看該作者
Book 196923 and by O. Toeplitz in a lecture in 1930 as the deepest part of mathe- matics. Clarification first began with the papers of Hadamard, de la Vallee Poussin, and von Mangoldt. At the end ofthe foreword to his work" Handbuch der Lehre von der Verteilung der Primzahlen" which appeared in 1909, Landau
24#
發(fā)表于 2025-3-25 16:50:30 | 只看該作者
tter of 1823 and by O. Toeplitz in a lecture in 1930 as the deepest part of mathe- matics. Clarification first began with the papers of Hadamard, de la Vallee Poussin, and von Mangoldt. At the end ofthe foreword to his work" Handbuch der Lehre von der Verteilung der Primzahlen" which appeared in 1909, Landau 978-1-4613-7184-7978-1-4615-4819-5
25#
發(fā)表于 2025-3-25 22:36:54 | 只看該作者
How to Extend A Calculus,s that in his correspondence he gave as well sharp criticism as warm encouragement which altered the contents considerably. Especially the period, in which I was fortunately enough to work with him at G?ttingen, contributed beyond measure to my mathematical development. The present paper would perha
26#
發(fā)表于 2025-3-26 01:17:12 | 只看該作者
27#
發(fā)表于 2025-3-26 07:37:29 | 只看該作者
28#
發(fā)表于 2025-3-26 09:42:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:14:06 | 只看該作者
On Local Theorems for Additive Number-Theoretic Functions,s . = 1, 2, … is called additive if .(.) = .(.) + .(.) provided (., .) = 1. The theory of integral limit laws for these functions has been developed by many authors. As to local laws which are generally speaking deeper very little is known. In this case it is a matter of finding an asymptotic expres
30#
發(fā)表于 2025-3-26 16:56:32 | 只看該作者
,The “Pits Effect” for the Integral Function,,ting a ‘random’ factor of the form ± 1. Littlewood and Offord [1] have shown that ‘most’ .(.) behave with great crudity and violence. If we erect an ordinate |.(.)| at the point . of the .-plane, then the resulting surface is an exponentially rapidly rising bowl, approximately of revolution, with ex
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 16:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宁县| 启东市| 庆元县| 久治县| 长武县| 新和县| 永康市| 阜平县| 漠河县| 兴仁县| 南昌市| 平陆县| 沾益县| 东乡县| 独山县| 龙海市| 思南县| 当涂县| 河北省| 三门峡市| 内黄县| 舒城县| 沙雅县| 盘山县| 水富县| 突泉县| 河源市| 周宁县| 胶州市| 伊宁市| 涞水县| 黑河市| 内乡县| 大新县| 游戏| 肃北| 甘孜| 耿马| 无极县| 兰考县| 时尚|