找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Destruct
21#
發(fā)表于 2025-3-25 05:56:40 | 只看該作者
On Automorphic Functions of Half-Integral Weight with Applications to Elliptic Curves,The theory of automorphic forms of 1/2-integral weight has attracted a considerable amount of attention in recent years. The striking difference between the case of integral and 1/2-integral weight is the fact that the Fourier coefficients of 1/2-integral weight forms are expressible in terms of the values of L-functions.
22#
發(fā)表于 2025-3-25 08:04:56 | 只看該作者
,Remarks on Equations Related to Fermat’s Last Theorem,For odd k, define θ(k) as the least value of s such that.has a non-trivial Solution over the integers. Fermat’s Last Theorem impl ies that θ(k) > 3 for odd k > 3.
23#
發(fā)表于 2025-3-25 13:33:19 | 只看該作者
The Cubic Thue Equation,Fix.a cubic form with non-zero discriminant; and let
24#
發(fā)表于 2025-3-25 16:42:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:24:52 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:35 | 只看該作者
https://doi.org/10.1007/978-1-4899-6699-5boundary element method; number theory; theorem
27#
發(fā)表于 2025-3-26 05:08:58 | 只看該作者
28#
發(fā)表于 2025-3-26 09:18:50 | 只看該作者
Some Remarks on Weierstrass Points,on S, different from 0, which vanishes at p to order at least g. The set of Weierstrass points on S is nonempty and finite; indeed, each Weierstrass point is assigned a positive integer called the Weierstrass weight, and then one has the result that the sum of the weights of all Weierstrass points on S is (g?l)g(g+l).
29#
發(fā)表于 2025-3-26 15:59:25 | 只看該作者
30#
發(fā)表于 2025-3-26 20:13:29 | 只看該作者
978-0-8176-3104-8Springer Science+Business Media New York 1982
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砀山县| 江永县| 东源县| 辛集市| 巩义市| 和林格尔县| 军事| 石门县| 天门市| 鹰潭市| 鄂托克旗| 南投县| 萨迦县| 吴川市| 司法| 仙桃市| 马龙县| 永定县| 荃湾区| 安义县| 仲巴县| 阿图什市| 当阳市| 喀喇| 莱西市| 仁怀市| 石林| 东至县| 白玉县| 固安县| 遂川县| 台江县| 板桥市| 读书| 宁南县| 织金县| 信阳市| 乌兰浩特市| 泽普县| 广元市| 柳林县|