找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory III; Diophantine Geometry Serge Lang Book 1991 Springer-Verlag Berlin Heidelberg 1991 Abelian varieties.Abelian variety.Dimen

[復(fù)制鏈接]
樓主: inroad
41#
發(fā)表于 2025-3-28 17:04:28 | 只看該作者
42#
發(fā)表于 2025-3-28 19:53:46 | 只看該作者
Heights and Rational Points,e domain. Part of determining the solutions consists in estimating the size of such solutions, in various ways. For instance if . are to be elements of the ring of integers Z, then we can estimate the absolute values |x|, |y| or better the maximum max(|x|, |y|). If x, y are taken to be rational numb
43#
發(fā)表于 2025-3-29 00:35:40 | 只看該作者
Abelian Varieties,c function associated with every divisor class. Furthermore, the group of rational points can be analyzed as a group, with a description of generators, bounds for the heights of generators, a description of the torsion, all emphasizing the group structure. Thus we collect such results in a separate
44#
發(fā)表于 2025-3-29 06:09:18 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:27 | 只看該作者
Modular Curves Over ,,ic curves with points of order ., or cyclic subgroups of order .. They form the prototype of higher dimensional versions, modular varieties, which parametrize abelian varieties with other structures involving points of finite order. We have already seen the use of such varieties in Faltings’ proof o
46#
發(fā)表于 2025-3-29 13:30:24 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:07 | 只看該作者
Arakelov Theory,amounted to the corresponding Riemann surfaces and their differential geometric properties once the number field gets imbedded into the complex numbers. Arakelov showed how one could define a global intersection number for two arithmetic curves on an arithmetic surface, and that this intersection nu
48#
發(fā)表于 2025-3-29 22:58:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨眉山市| 武强县| 阳泉市| 宁波市| 德阳市| 湘乡市| 望谟县| 盐源县| 富裕县| 阿坝县| 平湖市| 逊克县| 杂多县| 大方县| 奉贤区| 湄潭县| 卢龙县| 望城县| 屯留县| 八宿县| 常山县| 罗平县| 临猗县| 武冈市| 加查县| 巴马| 阜宁县| 博爱县| 荥经县| 微博| 通辽市| 南昌县| 成武县| 汉寿县| 凤庆县| 马公市| 永靖县| 阳原县| 宁晋县| 乌拉特前旗| 临湘市|