找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory III; Diophantine Geometry Serge Lang Book 1991 Springer-Verlag Berlin Heidelberg 1991 Abelian varieties.Abelian variety.Dimen

[復(fù)制鏈接]
樓主: inroad
41#
發(fā)表于 2025-3-28 17:04:28 | 只看該作者
42#
發(fā)表于 2025-3-28 19:53:46 | 只看該作者
Heights and Rational Points,e domain. Part of determining the solutions consists in estimating the size of such solutions, in various ways. For instance if . are to be elements of the ring of integers Z, then we can estimate the absolute values |x|, |y| or better the maximum max(|x|, |y|). If x, y are taken to be rational numb
43#
發(fā)表于 2025-3-29 00:35:40 | 只看該作者
Abelian Varieties,c function associated with every divisor class. Furthermore, the group of rational points can be analyzed as a group, with a description of generators, bounds for the heights of generators, a description of the torsion, all emphasizing the group structure. Thus we collect such results in a separate
44#
發(fā)表于 2025-3-29 06:09:18 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:27 | 只看該作者
Modular Curves Over ,,ic curves with points of order ., or cyclic subgroups of order .. They form the prototype of higher dimensional versions, modular varieties, which parametrize abelian varieties with other structures involving points of finite order. We have already seen the use of such varieties in Faltings’ proof o
46#
發(fā)表于 2025-3-29 13:30:24 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:07 | 只看該作者
Arakelov Theory,amounted to the corresponding Riemann surfaces and their differential geometric properties once the number field gets imbedded into the complex numbers. Arakelov showed how one could define a global intersection number for two arithmetic curves on an arithmetic surface, and that this intersection nu
48#
發(fā)表于 2025-3-29 22:58:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
慈利县| 崇仁县| 响水县| 彰化县| 丰都县| 文昌市| 陈巴尔虎旗| 新巴尔虎右旗| 元朗区| 浦北县| 宽甸| 宿松县| 延津县| 灵武市| 襄城县| 麻栗坡县| 蓝山县| 呼图壁县| 中山市| 白水县| 玉林市| 苏州市| 定安县| 建水县| 英超| 昌图县| 东明县| 德庆县| 咸宁市| 黑水县| 商洛市| 萨迦县| 玛曲县| 米泉市| 德庆县| 子长县| 金寨县| 毕节市| 镇康县| 阿合奇县| 南阳市|