找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory I; Fundamental Problems A. N. Parshin,I. R. Shafarevich Book 19951st edition Springer-Verlag Berlin Heidelberg 1995 Arakelov

[復(fù)制鏈接]
樓主: 能干
11#
發(fā)表于 2025-3-23 11:33:30 | 只看該作者
A. N. Parshin,I. R. Shafarevich owing to cosmetic problems, skin inflammation, or bile leakage, compromising the patient’s quality of life. Recently, EUS-guided biliary drainage (EUS-BD) has been developed and reported as a novel useful alternative internal drainage technique when standard endoscopic transpapillary drainage has failed.
12#
發(fā)表于 2025-3-23 14:12:28 | 只看該作者
13#
發(fā)表于 2025-3-23 21:09:46 | 只看該作者
14#
發(fā)表于 2025-3-23 23:56:03 | 只看該作者
15#
發(fā)表于 2025-3-24 06:00:22 | 只看該作者
0938-0396 number theory, whereas modular functions are. In this report we interpret number theory broadly. There are compelling reasons to adopt this viewpoint. First of all, the integers constitute (together with geometric images) one of the primary subjects of mathematics in ge978-3-662-08005-4Series ISSN 0938-0396
16#
發(fā)表于 2025-3-24 10:25:50 | 只看該作者
A. N. Parshin,I. R. Shafarevichthe so-called dual-modality contrast agents (DMCAs) used in SPECT/MRI and PET/MRI applications. The synthesis of RIONs and their in vivo examination of their biodistribution and imaging effectiveness as possible SPECT/MRI or PET/MRI DMCAs are other topics covered in this chapter.
17#
發(fā)表于 2025-3-24 14:15:18 | 只看該作者
Some Modern Problems of Elementary Number Theoryn . and are asked to find . and . If . then the naive repeated trial of all . would require more than.divisions with remainder. This exponential growth of the running time makes the factorization of even rather small numbers unfeasible, at least unless one invents more efficient algorithms.
18#
發(fā)表于 2025-3-24 18:08:05 | 只看該作者
19#
發(fā)表于 2025-3-24 20:28:16 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
集贤县| 平泉县| 高清| 岳西县| 宝清县| 凯里市| 桓台县| 墨竹工卡县| 昭苏县| 日照市| 平谷区| 太仓市| 桂平市| 阿合奇县| 秭归县| 桦甸市| 文成县| 永顺县| 瑞丽市| 杭锦旗| 雅安市| 台北县| 西城区| 大港区| 昌邑市| 淳安县| 徐州市| 黑龙江省| 永修县| 阜宁县| 赤城县| 阳城县| 开原市| 鄯善县| 雷山县| 崇州市| 佛冈县| 莒南县| 连云港市| 松江区| 齐河县|