找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; New York Seminar 200 David Chudnovsky,Gregory Chudnovsky,Melvyn Nathans Book 2004 Springer-Verlag New York, Inc. 2004 Rieman

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:00:15 | 只看該作者
42#
發(fā)表于 2025-3-28 19:17:29 | 只看該作者
Continued Fractions and Quadratic Irrationals,ave not achieved a mainstream popularity and are often omitted in courses on number theory. Of course there are reasons for this; their basic construction strikes one as rather bizarre and they are notoriously impossible to manipulate with respect to the usual operations of arithmetic. Furthermore,
43#
發(fā)表于 2025-3-28 23:14:30 | 只看該作者
The inverse problem for representation functions of additive bases,≤ ... The function .. : . → .. ∪ {∞} is the . 2 .. The set . is called an . 2 ..(0) is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of two not necessarily distinct elements of .. It is proved that every function is a representation functi
44#
發(fā)表于 2025-3-29 03:08:56 | 只看該作者
On the ubiquity of Sidon sets,for every positive integer ., a ..[.]-set is a set . of integers such that no integer has more than . essentially distinct representation-s as the sum of two elements of .. It is proved that almost all small subsets of {1, 2,…, .} are ..[.]-sets, in the sense that if .. [.](.) denotes the number of
45#
發(fā)表于 2025-3-29 09:51:08 | 只看該作者
46#
發(fā)表于 2025-3-29 12:31:26 | 只看該作者
One Bit World,We want to acknowledge Michael Gerzon of Oxford who had been an early pioneer of one bit audio.
47#
發(fā)表于 2025-3-29 17:52:37 | 只看該作者
48#
發(fā)表于 2025-3-29 20:25:29 | 只看該作者
49#
發(fā)表于 2025-3-30 01:35:01 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:51 | 只看該作者
,Humbert’s Conic Model and the Kummer Surface,ove theorems of geometry and mechanics. This method is implicit in his earlier applications of Kummer surfaces, for instance his criterion for real multiplication by . uses the special “quarter-period” configuration in the pencil.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原平市| 永泰县| 涡阳县| 嘉鱼县| 大竹县| 南郑县| 黄石市| 柯坪县| 家居| 新兴县| 容城县| 聂荣县| 太康县| 怀柔区| 三亚市| 绿春县| 邯郸市| 六安市| 河西区| 岢岚县| 沂南县| 沾益县| 肇州县| 威远县| 瑞丽市| 金山区| 青州市| 麻阳| 乌海市| 藁城市| 隆尧县| 盐城市| 简阳市| 新野县| 连城县| 即墨市| 金沙县| 永川市| 通城县| 灵石县| 永清县|