找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; R. P. Bambah,V. C. Dumir,R. J. Hans-Gill Book 2000 Springer Basel AG 2000 algebra.arithmetic.boundary element method.crypto

[復(fù)制鏈接]
樓主: 浮華
51#
發(fā)表于 2025-3-30 09:31:37 | 只看該作者
52#
發(fā)表于 2025-3-30 14:39:02 | 只看該作者
53#
發(fā)表于 2025-3-30 20:00:29 | 只看該作者
A Centennial History of the Prime Number Theorem,Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the ., which describes the asymptotic distribution of prime numbers.
54#
發(fā)表于 2025-3-30 21:51:43 | 只看該作者
On the Oscillation Theorems of Pringsheim and Landau,Our theme is a relation between the sign of a real function and the analytic behaviour of its associated generating function at a special point on the boundary of convergence.
55#
發(fā)表于 2025-3-31 03:00:55 | 只看該作者
The ,-conjecture,In the present paper we give a survey of the .-conjecture and of its modifications and generalizations. We discuss several consequences of the conjecture. At the end of the paper there are given numerical examples giving some evidence for the conjecture.
56#
發(fā)表于 2025-3-31 06:25:50 | 只看該作者
57#
發(fā)表于 2025-3-31 12:33:00 | 只看該作者
58#
發(fā)表于 2025-3-31 16:55:23 | 只看該作者
59#
發(fā)表于 2025-3-31 20:31:42 | 只看該作者
,Artin’s Conjecture for Polynomials Over Finite Fields,A classical conjecture of E. Artin[Ar] predicts that any integer . ≠ ±1 or a perfect square is a primitive root (mod .) for infinitely many primes .. This conjecture is still open. In 1967, Hooley[H] proved the conjecture assuming the (as yet) unresolved generalized Riemann hypothesis for Dedekind zeta functions of certain number fields.
60#
發(fā)表于 2025-4-1 00:16:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博乐市| 鄂尔多斯市| 淮阳县| 新野县| 洛浦县| 恩施市| 天祝| 孝感市| 涡阳县| 曲阳县| 仪征市| 汉源县| 东辽县| 璧山县| 大名县| 富裕县| 台山市| 刚察县| 台山市| 从江县| 宿松县| 南召县| 九寨沟县| 辛集市| 桑植县| 靖西县| 平南县| 文昌市| 九龙坡区| 乳源| 贵德县| 永寿县| 北辰区| 碌曲县| 凌源市| 卓资县| 盐山县| 梨树县| 鹰潭市| 文登市| 建平县|