找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; A Seminar held at th David V. Chudnovsky,Gregory V. Chudnovsky,Melvyn B Conference proceedings 1985 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: Nonchalant
31#
發(fā)表于 2025-3-26 22:11:24 | 只看該作者
William L. Hoytapplications.Differs from books on applications of nonlinearThe aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well
32#
發(fā)表于 2025-3-27 03:11:56 | 只看該作者
33#
發(fā)表于 2025-3-27 05:17:47 | 只看該作者
34#
發(fā)表于 2025-3-27 10:13:22 | 只看該作者
Peter Sarnakd explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematic
35#
發(fā)表于 2025-3-27 14:21:46 | 只看該作者
Noriko Yuiapplications.Differs from books on applications of nonlinearThe aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well
36#
發(fā)表于 2025-3-27 19:29:09 | 只看該作者
37#
發(fā)表于 2025-3-27 22:02:35 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/n/image/668849.jpg
38#
發(fā)表于 2025-3-28 05:47:58 | 只看該作者
https://doi.org/10.1007/BFb0074598Finite; Grothendieck topology; Lattice; New York; approximation; differential equation; equation; finite fi
39#
發(fā)表于 2025-3-28 08:49:18 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:43 | 只看該作者
Number Theory978-3-540-39535-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵南县| 昌黎县| 乐平市| 鲁山县| 广水市| 玉山县| 郁南县| 余江县| 应用必备| 广灵县| 临漳县| 资溪县| 龙游县| 彝良县| 宜黄县| 汕头市| 定州市| 临漳县| 当阳市| 水富县| 军事| 隆回县| 元朗区| 浮山县| 荣成市| 元阳县| SHOW| 囊谦县| 白城市| 尤溪县| 巫山县| 谢通门县| 正宁县| 兴和县| 包头市| 屯门区| 桓仁| 迁西县| 泽库县| 纳雍县| 大足县|