找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Systems for Deep Neural Network Architectures; Ghada Alsuhli,Vasilis Sakellariou,Thanos Stouraiti Book 2024 The Editor(s) (if appli

[復(fù)制鏈接]
查看: 53013|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:51:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures
編輯Ghada Alsuhli,Vasilis Sakellariou,Thanos Stouraiti
視頻videohttp://file.papertrans.cn/669/668838/668838.mp4
概述Explores different design aspects associated with each number system and their effects on DNN performance.Discusses the most efficient number systems for DNNs hardware realization.Describes various nu
叢書(shū)名稱(chēng)Synthesis Lectures on Engineering, Science, and Technology
圖書(shū)封面Titlebook: Number Systems for Deep Neural Network Architectures;  Ghada Alsuhli,Vasilis Sakellariou,Thanos Stouraiti Book 2024 The Editor(s) (if appli
描述.This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP),?Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS).?The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them..
出版日期Book 2024
關(guān)鍵詞deep neural network number representation; deep neural network accelerators; deep neural network archi
版次1
doihttps://doi.org/10.1007/978-3-031-38133-1
isbn_softcover978-3-031-38135-5
isbn_ebook978-3-031-38133-1Series ISSN 2690-0300 Series E-ISSN 2690-0327
issn_series 2690-0300
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures影響因子(影響力)




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures被引頻次




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures被引頻次學(xué)科排名




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures年度引用




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures年度引用學(xué)科排名




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures讀者反饋




書(shū)目名稱(chēng)Number Systems for Deep Neural Network Architectures讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:20:17 | 只看該作者
地板
發(fā)表于 2025-3-22 08:30:15 | 只看該作者
5#
發(fā)表于 2025-3-22 10:28:21 | 只看該作者
978-3-031-38135-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
6#
發(fā)表于 2025-3-22 14:23:53 | 只看該作者
7#
發(fā)表于 2025-3-22 19:56:51 | 只看該作者
,DFXP for?DNN Architectures, floating point systems highlighting their similarities and differences. In addition, we review existing DNN architectures that use DFXP and compare their performance. Additionally, we discuss the various factors that impact DNN performance when using DFXP and explore different approaches for determining the optimal settings of these factors.
8#
發(fā)表于 2025-3-23 00:36:01 | 只看該作者
Ghada Alsuhli,Vasilis Sakellariou,Thanos StouraitiExplores different design aspects associated with each number system and their effects on DNN performance.Discusses the most efficient number systems for DNNs hardware realization.Describes various nu
9#
發(fā)表于 2025-3-23 02:51:55 | 只看該作者
Conventional Number Systems for DNN Architectures,two representations and briefly discusses their utilization for implementing DNN hardware, in order to facilitate a comparison between conventional and unconventional number systems presented in subsequent chapters.
10#
發(fā)表于 2025-3-23 08:57:31 | 只看該作者
,RNS for?DNN Architectures, and multiplication become smaller and can operate on higher frequencies and with lower power consumption. In this Chapter, the basic RNS arithmetic operations and their hardware implementation are described. Moreover, RNS-based DNN architectures reported in the literature are presented and compared.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 11:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庐江县| 陆河县| 女性| 徐闻县| 云安县| 高青县| 黔西县| 华蓥市| 富锦市| 邹城市| 五大连池市| 连南| 宣武区| 黄陵县| 濉溪县| 泽普县| 通河县| 忻城县| 建水县| 晋中市| 信阳市| 玉屏| 金华市| 罗平县| 阿拉尔市| 从化市| 林芝县| 佳木斯市| 平远县| 仙桃市| 水富县| 湘西| 墨竹工卡县| 威海市| 安溪县| 沅江市| 夏河县| 晋州市| 铜山县| 东光县| 醴陵市|