找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Fields; Daniel A. Marcus Textbook 19771st edition Springer Science+Business Media New York 1977 Algebraische Zahlentheorie.Fields.P

[復(fù)制鏈接]
樓主: supplementary
31#
發(fā)表于 2025-3-27 00:04:03 | 只看該作者
The distribution of primes and an introduction to class field theory,urn out to be distributed uniformly (in some sense) among the members of the group; in particular each group element is the image of infinitely many primes. Except in certain special cases, however, the proof of this depends upon facts from class field theory which will not be proved in this book. T
32#
發(fā)表于 2025-3-27 04:49:02 | 只看該作者
33#
發(fā)表于 2025-3-27 05:21:22 | 只看該作者
The distribution of ideals in a number ring,We are going to exploit the geometric methods of chapter 5 to establish results about the distribution of the ideals of a number ring R. In a sense to be made precise shortly, we will show that the ideals are approximately equally distributed among the ideal classes, and the number of ideals with ‖I‖ ≤ t, t ≥ 0, is approximately proportional to t.
34#
發(fā)表于 2025-3-27 13:18:23 | 只看該作者
Number fields and number rings, some algebraic number α ∈ ?. If α is a root of an irreducible polynomial over ?, having degree n, then . and representation in this form is unique; in other words, {1.,α.} is a basis for ?[α] as a vector space over ?.
35#
發(fā)表于 2025-3-27 15:52:25 | 只看該作者
The ideal class group and the unit group,tiplication defined in the obvious way, and the fact that this is actually a group was proved in chapter 3 (Corollary 1 of Theorem 15). In this chapter we will prove that the ideal class group of a number ring is finite and establish some quantitative results that will enable us to determine the ideal class group in specific cases.
36#
發(fā)表于 2025-3-27 19:23:34 | 只看該作者
37#
發(fā)表于 2025-3-28 00:51:50 | 只看該作者
Textbook 19771st edition" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
38#
發(fā)表于 2025-3-28 05:13:33 | 只看該作者
39#
發(fā)表于 2025-3-28 07:43:03 | 只看該作者
Universitexthttp://image.papertrans.cn/n/image/668834.jpg
40#
發(fā)表于 2025-3-28 13:09:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 17:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会理县| 文昌市| 博乐市| 抚松县| 连江县| 高陵县| 绥芬河市| 陇南市| 奇台县| 昭通市| 潼南县| 海门市| 璧山县| 中阳县| 广平县| 拜城县| 徐州市| 密云县| 五台县| 荥经县| 射阳县| 读书| 仁化县| 永善县| 武隆县| 博客| 林口县| 通渭县| 罗平县| 咸阳市| 淅川县| 象山县| 阜新| 来宾市| 都安| 那曲县| 思茅市| 霍山县| 南木林县| 边坝县| 商水县|