找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Set Theory; Yiannis N. Moschovakis Textbook 19941st edition Springer Science+Business Media New York 1994 Finite.Mathematica.axio

[復(fù)制鏈接]
樓主: FERAL
31#
發(fā)表于 2025-3-27 00:12:21 | 只看該作者
32#
發(fā)表于 2025-3-27 02:24:37 | 只看該作者
https://doi.org/10.1007/978-1-4757-4153-7Finite; Mathematica; axiom of choice; language; mathematics; object; ordinal; recursion; set; set theory; sets
33#
發(fā)表于 2025-3-27 08:03:13 | 只看該作者
Equinumerosity,After these preliminaries, we can formulate the fundamental definitions of Cantor about the size or cardinality of sets.
34#
發(fā)表于 2025-3-27 11:03:18 | 只看該作者
35#
發(fā)表于 2025-3-27 16:38:54 | 只看該作者
36#
發(fā)表于 2025-3-27 17:50:48 | 只看該作者
37#
發(fā)表于 2025-3-28 01:21:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:01:46 | 只看該作者
Are Sets All There is?,tal theorem . of Cantor is about the set ? of real numbers, etc. Put another way, the results of Chapter 2 are not only about sets, but about points, numbers, functions, Cartesian products and many other mathematical objects which are plainly not sets. Where will we find these objects in the axioms of Zermelo which speak only about sets?
39#
發(fā)表于 2025-3-28 09:23:43 | 只看該作者
Replacement and Other Axioms,set construction no less plausible than any of the constructive axioms (.) – (.) but powerful in its consequences. We will also introduce and discuss some additional principles which are often included in axiomatizations of set theory.
40#
發(fā)表于 2025-3-28 10:28:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邯郸市| 涞水县| 托克托县| 来安县| 迁安市| 建阳市| 韩城市| 通河县| 盘山县| 康平县| 旅游| 明水县| 河北省| 桦川县| 德清县| 金塔县| 巫溪县| 东阿县| 柯坪县| 北海市| 肇东市| 汶川县| 宁陕县| 吉木萨尔县| 汾阳市| 灵丘县| 大理市| 报价| 都匀市| 望奎县| 海晏县| 疏附县| 巴南区| 伊川县| 信阳市| 资溪县| 改则县| 文化| 个旧市| 忻城县| 元江|