找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Norm Ideals of Completely Continuous Operators; Robert Schatten Book 1970Latest edition Springer-Verlag Berlin Heidelberg 1970 Analysis.Fu

[復(fù)制鏈接]
樓主: PEL
11#
發(fā)表于 2025-3-23 10:09:01 | 只看該作者
12#
發(fā)表于 2025-3-23 15:10:54 | 只看該作者
The trace-class (,),Consider .. — the linear space of all linear transformations on an .-dimensional space. The trace .(.) defined for . ∈ .. is a complex valued linear functional whose characteristic properties are simple and well known. Moreover .(.) = .([.]) defines a norm on ... An extension of these facts is being presented in the discussion which follows.
13#
發(fā)表于 2025-3-23 18:21:01 | 只看該作者
,The successive conjugate spaces of the space ? of all completely continuous operators,We denote by . the Banach space (algebra) of all operators on ? and by ? its subspace (Banach subalgebra) of all completely continuous operators; the bound of an operator represents its norm.
14#
發(fā)表于 2025-3-23 23:53:12 | 只看該作者
15#
發(fā)表于 2025-3-24 05:57:07 | 只看該作者
The Schmidt-class,y be interpreted as the integral operators on an abstract Hilbert space in the sense specified in the following section. The reader will do well to supplement the discussion of this chapter by consulting . and . [1], especially for their very illuminating bibliographic account of the theory of integral equations.
16#
發(fā)表于 2025-3-24 08:59:22 | 只看該作者
17#
發(fā)表于 2025-3-24 14:32:52 | 只看該作者
https://doi.org/10.1007/978-3-662-35155-0Analysis; Funktionalanalysis; Mathematik; Norm; Operator; Operatortheorie
18#
發(fā)表于 2025-3-24 17:46:19 | 只看該作者
978-3-662-34827-7Springer-Verlag Berlin Heidelberg 1970
19#
發(fā)表于 2025-3-24 20:17:49 | 只看該作者
20#
發(fā)表于 2025-3-25 00:39:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 05:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊金霍洛旗| 安庆市| 客服| 南溪县| 迁安市| 漾濞| 塔河县| 宁远县| 东乡县| 横山县| 阳原县| 宝清县| 明光市| 奉新县| 怀远县| 康保县| 郓城县| 霸州市| 凤山县| 松原市| 重庆市| 临沧市| 电白县| 延寿县| 开江县| 罗源县| 察隅县| 翼城县| 安仁县| 恭城| 太和县| 广元市| 金平| 建阳市| 武平县| 京山县| 杂多县| 大宁县| 万全县| 湾仔区| 花莲县|