找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Statistics for Stochastic Processes; Estimation and Predi D. Bosq Book 1998Latest edition Springer Science+Business Media New

[復(fù)制鏈接]
樓主: cobble
21#
發(fā)表于 2025-3-25 06:36:12 | 只看該作者
Lecture Notes in Statisticshttp://image.papertrans.cn/n/image/667837.jpg
22#
發(fā)表于 2025-3-25 09:06:59 | 只看該作者
23#
發(fā)表于 2025-3-25 12:53:01 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:06 | 只看該作者
Synopsis,Classically time series analysis has two purposes.One of these is to construct a model which fits the data and then to estimate the model’s parameters. The second object is to use the identified model for prediction.
25#
發(fā)表于 2025-3-25 20:51:36 | 只看該作者
Inequalities for mixing processes,In this chapter we present some inequalities for covariances, joint densities and partial sums of stochastic discrete time processes when dependence is measured by strong mixing coefficients. The main tool is coupling with independent random variables. Some limit theorems for mixing processes are given as applications.
26#
發(fā)表于 2025-3-26 02:11:45 | 只看該作者
Density estimation for discrete time processes,This chapter deals with nonparametric density estimation for sequences of correlated random variables.
27#
發(fā)表于 2025-3-26 06:19:55 | 只看該作者
Kernel density estimation for continuous time processes,In this chapter we investigate the problem of estimating density for continuous time processes when continuous or sampled data are available.
28#
發(fā)表于 2025-3-26 09:41:55 | 只看該作者
Regression estimation and prediction in continuous time,Despite its great importance in practice, nonparametric regression estimation in continuous time has not been much studied up to now. The current chapter is perhaps the first general work on that topic.
29#
發(fā)表于 2025-3-26 12:59:20 | 只看該作者
The local time density estimator,In this Chapter we use local time for constructing an unbiased estimator of density when continuous sample is available. This estimator appears to be natural since it is the density of empirical measure.
30#
發(fā)表于 2025-3-26 19:45:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞头县| 哈尔滨市| 时尚| 临武县| 茂名市| 宝鸡市| 哈巴河县| 新营市| 祁东县| 黄梅县| 金秀| 上虞市| 锡林郭勒盟| 兰州市| 无为县| 玉林市| 贡觉县| 辽阳市| 平度市| 茂名市| 道孚县| 霍林郭勒市| 句容市| 常宁市| 大新县| 丽水市| 左贡县| 安平县| 永康市| 玉田县| 壤塘县| 申扎县| 大港区| 凉城县| 慈溪市| 乐亭县| 松桃| 奎屯市| 鄯善县| 和政县| 耿马|