找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Statistics; 3rd ISNPS, Avignon, Patrice Bertail,Delphine Blanke,Eric Matzner-L?ber Conference proceedings 2018 Springer Natu

[復(fù)制鏈接]
樓主: McKinley
51#
發(fā)表于 2025-3-30 10:42:13 | 只看該作者
A Nonparametric Classification Algorithm Based on Optimized Templates,ion from the centroid (prototype, template) of one of the groups. The general procedure is described on the particular task of mouth localization in facial images, where the centroid has the form of a mouth template. While templates are most commonly constructed as simple averages of positive exampl
52#
發(fā)表于 2025-3-30 14:52:24 | 只看該作者
53#
發(fā)表于 2025-3-30 19:31:17 | 只看該作者
54#
發(fā)表于 2025-3-30 20:49:38 | 只看該作者
55#
發(fā)表于 2025-3-31 02:58:13 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:32 | 只看該作者
57#
發(fā)表于 2025-3-31 13:16:14 | 只看該作者
Probability Bounds for Active Learning in the Regression Problem,sion problem simultaneously with that of model selection. We consider a batch type approach and an on-line approach adapting algorithms developed for the classification problem. Our main tools are concentration-type inequalities which allow us to bound the supreme of the deviations of the sampling s
58#
發(fā)表于 2025-3-31 14:42:57 | 只看該作者
Elemental Estimates, Influence, and Algorithmic Leveraging,be expressed as a weighted sum of so-called elemental estimates based on subsets of . observations where . is the dimension of parameter vector. The weights can be viewed as a probability distribution on subsets of size . of the predictors {..?:?.?=?1, ? , .}. In this contribution, we derive the low
59#
發(fā)表于 2025-3-31 17:39:23 | 只看該作者
60#
發(fā)表于 2025-3-31 22:29:50 | 只看該作者
Extension Sampling Designs for Big Networks: Application to Twitter,is of prohibitive cost for big graphs. Statistical estimators can thus be preferable. Model-based estimators for networks have some drawbacks. We study design-based estimates relying on sampling methods that were developed specifically for use on graph populations. In this contribution, we test some
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨江| 新田县| 拉萨市| 和林格尔县| 金湖县| 武义县| 平阳县| 阜宁县| 开平市| 吉林省| 广灵县| 开远市| 竹山县| 龙胜| 涞源县| 广州市| 遂昌县| 时尚| 濉溪县| 轮台县| 宁阳县| 长沙县| 出国| 盖州市| 永修县| 盐边县| 前郭尔| 鸡西市| 垦利县| 梅州市| 西安市| 乐亭县| 海兴县| 庆安县| 九江县| 云林县| 宁晋县| 双江| 和田市| 乌兰察布市| 宁陕县|