找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlocal and Fractional Operators; Luisa Beghin,Francesco Mainardi,Roberto Garrappa Book 2021 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 16:58:55 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:34 | 只看該作者
On Time Fractional Derivatives in Fractional Sobolev Spaces and Applications to Fractional Ordinaryy are isomorphisms between the corresponding Sobolev space of order . and the .-space. On the basis of such fractional derivatives, we formulate initial value problems for time fractional ordinary differential equations and prove the well-posedness.
43#
發(fā)表于 2025-3-29 02:23:00 | 只看該作者
44#
發(fā)表于 2025-3-29 06:45:56 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:36 | 只看該作者
The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles,n. The Pearcey equation can be considered as a . to relativity since it embeds the peculiar features of the relativistic evolution even if it looks very similar to the Schr?dinger equation. In light of the catastrophe theory, the Pearcey equation acquires a deeper physical meaning as a candidate for describing quasiparticles.
46#
發(fā)表于 2025-3-29 13:33:14 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:51 | 只看該作者
48#
發(fā)表于 2025-3-29 22:24:27 | 只看該作者
,Sinc Methods for Lévy–Schr?dinger Equations,that only for skewness parameters . the eigenvalues are real quantities and thus relevant in quantum mechanics. However, for skewness parameters ., the Sinc approach yields complex eigenvalues with related complex eigenfunctions, and a fortiori, real probability densities.
49#
發(fā)表于 2025-3-30 03:01:18 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈巴河县| 忻州市| 当涂县| 嘉兴市| 辽宁省| 北辰区| 双峰县| 本溪| 邵阳市| 金溪县| 新和县| 衡南县| 泾川县| 招远市| 和硕县| 洪泽县| 万州区| 井研县| 门源| 桦川县| 蓬溪县| 临西县| 邹平县| 仁布县| 方山县| 齐河县| 合川市| 江孜县| 鄂尔多斯市| 龙岩市| 古蔺县| 西吉县| 淳安县| 黄山市| 会东县| 大宁县| 龙山县| 龙门县| 青海省| 闽清县| 夏津县|