找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlocal and Fractional Operators; Luisa Beghin,Francesco Mainardi,Roberto Garrappa Book 2021 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Insularity
31#
發(fā)表于 2025-3-26 21:59:41 | 只看該作者
,Sinc Methods for Lévy–Schr?dinger Equations,y stable probability distributions. The corresponding Sturm–Liouville (SL) problem for the fractional Schr?dinger equation is formulated and solved on . satisfying natural Dirichlet boundary conditions. The eigenvalues and eigenfunctions are computed in a numerical Sinc approximation applied to the
32#
發(fā)表于 2025-3-27 01:10:26 | 只看該作者
33#
發(fā)表于 2025-3-27 08:10:28 | 只看該作者
34#
發(fā)表于 2025-3-27 12:35:19 | 只看該作者
Some New Exact Results for Non-linear Space-Fractional Diffusivity Equations,bout nonlocal space-fractional generalizations of diffusion models. The obtained equation can be simply linearized into a classical space-fractional diffusion equation, widely studied in the literature. We consider the case of a power-law pressure-dependence of the permeability coefficient. In this
35#
發(fā)表于 2025-3-27 14:27:21 | 只看該作者
A Note on Hermite-Bernoulli Polynomials,rnoulli class, and we also show how to represent the action of the operators involving fractional derivatives. In particular, by using the method of generating function, we introduce generalized Bernoulli polynomials by operating in their generating function with the formalism of the two-variable He
36#
發(fā)表于 2025-3-27 20:06:31 | 只看該作者
37#
發(fā)表于 2025-3-27 22:25:05 | 只看該作者
38#
發(fā)表于 2025-3-28 05:27:03 | 只看該作者
The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles,ed as a mathematical tool to address the problem of nonlocality concerning the pseudo-differential operator in the Hamiltonian of the Salpeter equation. The Pearcey equation can be considered as a . to relativity since it embeds the peculiar features of the relativistic evolution even if it looks ve
39#
發(fā)表于 2025-3-28 06:39:55 | 只看該作者
40#
發(fā)表于 2025-3-28 14:09:32 | 只看該作者
The PDD Method for Solving Linear, Nonlinear, and Fractional PDEs Problems,roblems. This Domain Decomposition (DD) method is based on a suitable probabilistic representation of the solution given in the form of an expectation which, in turns, involves the solution of a Stochastic Differential Equation (SDE). While the structure of the SDE depends only upon the correspondin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀远县| 托克逊县| 怀仁县| 镇沅| 广河县| 克东县| 丹阳市| 马鞍山市| 宜兴市| 股票| 彭阳县| 咸宁市| 象山县| 邢台县| 梁河县| 韶关市| 安国市| 灵寿县| 延津县| 普定县| 浦江县| 平安县| 商丘市| 石首市| 洛南县| 河曲县| 陆川县| 平塘县| 融水| 忻州市| 界首市| 龙川县| 鹤壁市| 鱼台县| 南江县| 禄丰县| 通江县| 宜城市| 昌乐县| 太原市| 泾源县|