找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinearity: Ordinary and Fractional Approximations by Sublinear and Max-Product Operators; George A. Anastassiou Book 2018 Springer Inte

[復(fù)制鏈接]
樓主: probiotic
41#
發(fā)表于 2025-3-28 15:57:45 | 只看該作者
42#
發(fā)表于 2025-3-28 21:04:25 | 只看該作者
George A. Anastassioulever Hans has finally dissipated. Not only have the types of tasks expanded, but the number of species, particularly those outside the mammalian order, is beginning to become more diverse. The primate order has been well represented, including studies with capuchin monkeys (Judge, Evans and Vyas, 2
43#
發(fā)表于 2025-3-28 23:07:03 | 只看該作者
44#
發(fā)表于 2025-3-29 06:54:17 | 只看該作者
45#
發(fā)表于 2025-3-29 10:42:42 | 只看該作者
Approximation by Positive Sublinear Operators,er initial conditions. We apply these to a series of well-known Max-product operators. So our approach is quantitative by producing inequalities with their right hand sides involving the modulus of continuity of a high order derivative of the function under approximation. It follows Anastassiou, Cor
46#
發(fā)表于 2025-3-29 13:30:06 | 只看該作者
47#
發(fā)表于 2025-3-29 18:43:58 | 只看該作者
Conformable Fractional Approximations Using Max-Product Operators,ive sublinear operators. Our study is based on our general results about positive sublinear operators. We produce Jackson type inequalities under conformable fractional initial conditions. So our approach is quantitative by producing inequalities with their right hand sides involving the modulus of
48#
發(fā)表于 2025-3-29 23:32:35 | 只看該作者
49#
發(fā)表于 2025-3-30 00:34:52 | 只看該作者
Canavati Fractional Approximations Using Max-Product Operators,ati fractional differentiability. Our approach is based on our general fractional results about positive sublinear operators. We derive Jackson type inequalities under simple initial conditions. So our way is quantitative by producing inequalities with their right hand sides involving the modulus of
50#
發(fā)表于 2025-3-30 06:00:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
银川市| 苍溪县| 广丰县| 五寨县| 炎陵县| 昭苏县| 来宾市| 邵阳县| 湖南省| 句容市| 睢宁县| 玉田县| 东兴市| 泽州县| 天峨县| 司法| 大兴区| 清镇市| 桃源县| 绥芬河市| 洞头县| 仁寿县| 宣化县| 开平市| 阿拉尔市| 郓城县| 思茅市| 印江| 依安县| 遂宁市| 夹江县| 永善县| 乌鲁木齐市| 沐川县| 临江市| 华容县| 郧西县| 北海市| 临颍县| 兴山县| 昆山市|